Кирилл Еременко - Работа с данными в любой сфере

Здесь есть возможность читать онлайн «Кирилл Еременко - Работа с данными в любой сфере» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Работа с данными в любой сфере: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Работа с данными в любой сфере»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что общего у аналитика данных и Шерлока Холмса? Как у Netflix получилось создать 100 %-ный хит – сериал «Карточный домик»? Ответ кроется в правильном использовании данных. Эта книга – практическое руководство и увлекательное путешествие в науку о данных, независимо от того, хотите ли вы использовать анализ данных в своей профессии, собираетесь ли стать аналитиком данных, или уже работаете в этой области. Ее автор, основатель образовательного онлайн-портала и консультант, Кирилл Еременко просто и понятно рассказывает об основных методах, алгоритмах и приемах, которые вам помогут на любом этапе: от сбора данных и их анализа до визуализации полученных результатов. Благодаря «Работе с данными в любой сфере» вы не только узнаете, как данные влияют на нашу жизнь (и как защитить свои данные), но и сможете расширить свои карьерные возможности.

Работа с данными в любой сфере — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Работа с данными в любой сфере», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Разрекламированный как предсказатель, помогающий студиям разбогатеть, Гэллап быстро стал любимцем многих лидеров киноиндустрии США, проверяя по данным опросов и интервью отношение аудитории к персонажам различных лент, от мультиков Уолта Диснея до фильмов Орсона Уэллса [4] Более подробно о новаторской работе Джорджа Гэллапа см. Ohmer (2012). .

Своим успехом Гэллап был обязан только данным (возможно, его можно назвать первым высокооплачиваемым аналитиком данных в мире). Его усилия в области статистики привели к тому, что этот ресурс по-прежнему имеет ценность за пределами своего первоначального замысла, обладая потенциалом охвата неструктурированных данных: записанных интервью представителей аудитории, отражающих культурные и социальные ценности того времени. Возможно, Гэллап подозревал, что потенциал анализа данных может только расти.

Данные могут генерировать контент

Итак, что если после всех умных свидетельств, основанных на данных, вы возненавидели фильм, который недавно видели в кинотеатре? Ну, данные, возможно, не могут предсказать все, но они, безусловно, заставили вас занять место перед экраном. Иногда данные могут получить тройку за достижения, но они всегда получают отлично за усилия. И над первым уже работают. Вместо того чтобы привязывать нужные демографические показатели аудитории к новому фильму или телевизионному сериалу, кинокомпании теперь находят способы использовать данные об аудитории, чтобы принимать обоснованные решения о предлагаемых публике развлечениях.

Но эта перемена влечет за собой необходимость в большем количестве данных. По этой причине сбор данных не прекращается, как только вы посмотрели выбранный для вас фильм; любые последующие комментарии, которые вы оставляете в социальных сетях или шлете по электронной почте, изменение ваших привычек просмотра фильмов в интернете генерируют о вас как о «кинозрителе» свежий массив данных, который учитывается в любых будущих рекомендациях, прежде чем наконец вы станете частью какой-либо демографической группы. Таким образом, по мере того как из подростка-эмо, интересующегося только демоническим пением, вы превращаетесь в любителя сложной сюрреалистической буффонады, которого все избегают на коктейльных вечеринках, ваши данные будут меняться вместе с вами и адаптироваться к этим колеблющимся предпочтениям.

В качестве примечания: еще более приятная новость состоит в том, что данные не отрицают ваших интересов. Если вы только прикидываетесь знатоком, но в действительности, как только опускаете шторы, до сих пор наслаждаетесь дрянными фильмами о зомби, ваши данные сохранят этот тайный вскормленный вами энтузиазм.

Конечно, оборотная сторона медали в том, что ваши данные могут выдавать секреты, касающиеся ваших предпочтений. Имейте в виду, что данные – это запись действий, они не будут лгать на ваш счет. Некоторые даже тратят недюжинные усилия, чтобы скрыть свой «фактический» след на сайтах цифровых музыкальных сервисов, теша собственное тщеславие: они запускают альбом музыки, которая, по их мнению, служит в обществе признаком хорошего вкуса, но не слушают ее, так что их накопленные данные представят искаженную версию того, что им нравится. На мой взгляд, у этих людей слишком много свободного времени, но манипулирование данными тем не менее является важной темой, и со временем мы вернемся к ней.

Кейс: Netflix

Сериал «Карточный домик», выпущенный развлекательной компанией Netflix, впервые доказал индустрии, насколько сильны могут быть данные не только в том, что касается охвата нужной аудитории определенными разновидностями контента, но и в управлении фактическим производством контента.

Сериал – политическая драма – выпуска 2013 г. был первой проверкой того, как данные могут быть применены в производстве хитов. В преддверии создания «Карточного домика» Netflix собирала данные о своих пользователях. Полученные сведения о зрительских привычках позволили Netflix группировать свой видеоконтент в разнообразные и даже удивительные категории. Интерфейс скрывал от пользователей эти категории, но тем не менее они были использованы компанией, чтобы представить нужный фильм нужной аудитории.

Когда информация об этих подкатегориях появилась в интернете несколько лет назад, люди были ошеломлены. Чтобы вы могли получить представление о том, насколько точно действовала Netflix, вот некоторые варианты подкатегорий: «Захватывающие фильмы ужасов 1980-х», «Хорошее образование и воспитание с участием героев “Маппет-шоу”», «Драмы шоу-бизнеса», «Глуповатая независимая сатира», «Откровенные фильмы о реальной жизни», «Умные фильмы о заграничных войнах», «Бросающие в дрожь триллеры» и «Признанные критиками мрачные фильмы-экранизации». Таковы весьма специфические предпочтения зрителей. Но Netflix нашла значительную аудиторию для каждой из этих категорий и для многих других.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Работа с данными в любой сфере»

Представляем Вашему вниманию похожие книги на «Работа с данными в любой сфере» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Оксения Бурлака - Звездам не дано любить
Оксения Бурлака
Отзывы о книге «Работа с данными в любой сфере»

Обсуждение, отзывы о книге «Работа с данными в любой сфере» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x