Кирилл Еременко - Работа с данными в любой сфере

Здесь есть возможность читать онлайн «Кирилл Еременко - Работа с данными в любой сфере» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Работа с данными в любой сфере: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Работа с данными в любой сфере»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что общего у аналитика данных и Шерлока Холмса? Как у Netflix получилось создать 100 %-ный хит – сериал «Карточный домик»? Ответ кроется в правильном использовании данных. Эта книга – практическое руководство и увлекательное путешествие в науку о данных, независимо от того, хотите ли вы использовать анализ данных в своей профессии, собираетесь ли стать аналитиком данных, или уже работаете в этой области. Ее автор, основатель образовательного онлайн-портала и консультант, Кирилл Еременко просто и понятно рассказывает об основных методах, алгоритмах и приемах, которые вам помогут на любом этапе: от сбора данных и их анализа до визуализации полученных результатов. Благодаря «Работе с данными в любой сфере» вы не только узнаете, как данные влияют на нашу жизнь (и как защитить свои данные), но и сможете расширить свои карьерные возможности.

Работа с данными в любой сфере — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Работа с данными в любой сфере», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С учетом всех обстоятельств вы можете спросить: «Каковы же ограничения: что мы называем данными, а что – нет? Считаются ли фактические сведения о цикле цветения растения (количественные данные) такими же данными, как фиксация ученым культурного обычая, связанного с передачей умирающему родственнику букета цветов из родной страны (качественные данные)?» Ответ – да. Данные не дискриминируются. Не имеет значения, является ли рассматриваемая единица информации количественной или качественной. Качественные данные, возможно, были менее полезными в прошлом, когда не была достаточно сложной технология их обработки, но благодаря достижениям в алгоритмах, способных обрабатывать такие данные, этот недостаток быстро уходит в прошлое.

Говоря об ограничениях понятия «данные», еще раз вспомните, что данные – это прошлое. Вы не можете получать данные из будущего, если только вам не удалось создать машину времени. Но в то время как данные нельзя получить из будущего, с их помощью можно получить представление о грядущем и прогнозировать его. И именно способность данных восполнить пробелы в наших знаниях делает их настолько увлекательными.

Большие данные прекрасны

Теперь, когда мы разобрались, что такое данные, нужно по-другому взглянуть на то, где и как они фактически хранятся. Мы уже продемонстрировали наш широкомасштабный потенциал создания данных (это «выхлопные данные») и пояснили, что, трактуя их как единицу информации, мы создаем очень широкую концепцию того, что понимается под данными. Итак, если они где-то рядом, где все это происходит ?

К настоящему времени вам, вероятно, доводилось слышать термин «большие данные». Проще говоря, большие данные – это название, присвоенное массивам данных со столбцами и строками, которых настолько много, что они не могут быть обработаны обычным аппаратным и программным обеспечением в течение разумного промежутка времени. По этой причине сам термин является динамичным – то, что расценивалось как большие данные в 2015 г., уже не будет считаться большими данными в 2020-м, поскольку к тому времени будут разработаны технологии, легко справляющиеся с подобными объемами.

Три V

Чтобы можно было считать массив данных большими данными, должно быть выполнено хотя бы одно из трех условий:

1. Объем данных – то есть размер массива данных (например, количество строк) – должен исчисляться миллиардами.

2. Скорость, то есть то, как быстро собираются данные (например, потоковое видео в интернете), предполагает, что скорость генерируемых данных слишком высока для адекватной обработки с использованием обычных методов.

3. Разнообразие. Это подразумевает либо разнородность типов информации, содержащейся в массиве данных, таком как текст, видео, аудио или файлы изображений (известные как неструктурированные данные), либо таблицы, содержащие значительное количество столбцов, которые представляют разные свойства данных.

Мы пользуемся большими данными в течение многих лет для всех видов дисциплин и гораздо дольше, чем вы могли бы ожидать, – просто до 1990-х гг. не было термина для их обозначения. Так что я вас шокирую: большие данные – это не большая новость. Это, конечно, не новая концепция. Многие, если не все, крупнейшие корпорации располагают огромными хранилищами данных об их клиентах, продуктах и услугах, которые собирались в течение длительного времени. Правительства хранят данные о людях, полученные в результате переписей и регистрации по месту проживания. Музеи хранят культурные данные – от артефактов и сведений о коллекционере до выставочных архивов. Даже наши собственные тела хранят большие данные в виде генома (подробнее об этом в главе 3 «Мышление, необходимое для эффективного анализа данных»).

Короче говоря, если вы просто не в состоянии работать с данными, то можете назвать их большими данными. Когда ученые используют термин, они делают это не просто так. Он применяется, чтобы привлечь внимание к тому, что стандартных методов для анализа данных, о которых идет речь, недостаточно.

Почему такая суета вокруг больших данных?

Вам может показаться странным, что мы только начали понимать, насколько значимыми могут быть данные. Но когда мы в прошлом собирали данные, единственное, что мешало нам превратить их во что-то полезное, было отсутствие технологий. В конце концов, важно не то, насколько огромны данные; важно, что вы с ними делаете. Любые данные, «большие» или иные, полезны, только если из них можно извлечь информацию, и до того, как была разработана соответствующая технология, чтобы помочь нам проанализировать и масштабировать эти данные, их полезность могла быть измерена только интеллектуальными возможностями человека, пытавшегося с ними совладать. Но для сортировки больших данных требуется более быстрый и мощный процессор, чем человеческий мозг. До технологических разработок XX в. данные хранились на бумаге, в архивах, библиотеках и хранилищах. Теперь почти все новые данные, которые мы собираем, хранятся в цифровом формате (и даже старые данные активно преобразуются в цифровые, о чем свидетельствует огромное количество ресурсов, сосредоточенных в таких цифровых собраниях, как Europeana Collections и Google Books).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Работа с данными в любой сфере»

Представляем Вашему вниманию похожие книги на «Работа с данными в любой сфере» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Оксения Бурлака - Звездам не дано любить
Оксения Бурлака
Отзывы о книге «Работа с данными в любой сфере»

Обсуждение, отзывы о книге «Работа с данными в любой сфере» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x