Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Здесь есть возможность читать онлайн «Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Санкт-Петербург, Год выпуска: 2021, ISBN: 2021, Издательство: Издательство Питер, Жанр: Базы данных, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Роман с Data Science. Как монетизировать большие данные [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Роман с Data Science. Как монетизировать большие данные [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Роман с Data Science. Как монетизировать большие данные [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Яркий пример того, как используются неявные данные, – когда по фото и видео с митингов распознают и арестовывают их участников, а тех, кто нарушил режим самоизоляции во время пандемии COVID-19, распознают по камерам наблюдения и штрафуют. Всего каких-то пятнадцать лет назад это казалось фантастикой. Эндрю Ын, главный эксперт, который стоит за алгоритмами распознавания по изображениям и которого я не раз упоминал в этой книге, сказал, что это двойственная технология: с одной стороны, она служит добру, с другой – ею легко злоупотреблять.

В наше время технология распознавания лиц уже отлично отработана, нужен всего лишь хороший датасет и доступ к камере. В статье «Мы создали “невероятную” систему распознавания лиц» [91] журналисты собрали небольшой датасет из публично доступных фотографий людей, работающих в районе Bryant Park. Они загрузили их в соответствующий сервис Amazon и буквально за 9 часов получили 2750 совпадений лиц с их датасетом. На все было потрачено всего 60 долларов. В принципе, такой датасет несложно собрать на основе социальных сетей – там есть сопоставление имени и фотографии. Раньше был условно-бесплатный сервис findface.ru (сейчас findface.pro), в который можно загрузить фотографию человека и получить его имя. В качестве датасета была использована социальная сеть «ВКонтакте».

Следующий источник неявных данных – считывание нашей точной геопозиции через смартфоны. Газета New York Times в конце 2019 года создала специальный проект «The Privacy Project» [87], где в серии статей освещаются разные вопросы сбора и использования наших данных. В статье из этой серии «One Nation Tracked» [88] рассказывается про то, как журналисты раздобыли очень большой датасет. В нем находится 50 миллионов геопозиций мобильных телефонов 12 миллионов американцев нескольких крупных городов США, включая Вашингтон, Нью-Йорк, Сан-Франциско и Лос-Анджелес. Каждая строка датасета включает в себя точное местоположение отдельного смартфона в течение нескольких месяцев 2016–2017 годов. Журналисты сделали исследование датасета и шикарную анимацию этих данных. Вроде бы данные полностью анонимизированные и поэтому безопасны, но, к великому сожалению, это не так. Пол Ом (Paul Ohm), профессор права и исследователь конфиденциальности Джорджтаунского университета, заявил в статье, что попытка представить данные геопозиций как анонимные – совершенно ложное утверждение, которое было опровергнуто множеством исследований. «Действительно точную геолокацию невозможно анонимизировать», он также добавил: «ДНК – это единственная вещь, которую сложнее анонимизировать, чем геолокацию». В большинстве случаев перемещение смартфона между домом и работой позволяет идентифицировать человека. Стал бы еще какой-то другой смартфон перемещаться между вашим домом и работой, кроме вашего? Эта статья подтверждает мое мнение, что использование неявных данных плохо защищается.

До широкого появления смартфонов нас уже «посчитали» дома и на рабочем месте через наши веб-браузеры. Куки (cookies) – небольшой фрагмент данных, который сохраняется веб-сервером на компьютере пользователя в процессе просмотра страниц. Сами куки были придуманы в июне 1994 года сотрудником Netscape Communications Лу Монтулли. Тогда они стали решением проблемы надежной реализации виртуальной корзины покупок. В течение двух лет куки приобрели огромную популярность и стали стандартом. В настоящее время существует несколько видов кук, о которых подробно рассказывается в любых курсах веб-аналитики, меня интересуют только два из них:

• Постоянные (persistent first-party cookies) – постоянные куки, которые хранятся в основном домене просматриваемого сайта из адресной строки браузера. Например, вы зашли на ozon.ru, куки этого типа будут сохраняться в «папку» ozon.ru.

• Сторонние (persistent third party cookies) – постоянные куки, которые хранятся на стороннем домене, не совпадающем с адресной строкой. Обычно они сохраняются через сторонний контент на странице, например через картинки с других доменов. Например, рекламная система doubleclick сохранит свою куку в папку doubleclick, несмотря на то что вы находитесь на сайте ozon.ru.

Первый используется для хранения ваших данных и авторизации, а также для веб-аналитики сайта. Например, когда вы заходите на сайт и авторизуетесь, то за счет куки второй тип – самый спорный. Сторонние куки можно использовать для трекинга вашего перемещения между сайтами, а также в интернет-рекламе и для передачи ваших данных сторонним ресурсам. Рассмотрим это на примере протокола RTB (Real Time Bidding) [89], который используется для мгновенного показа персонализированной рекламы через баннеры и видео. Часть мест на контентных сайтах, а это 2.5 миллиона из 4 миллионов сайтов рунета, выкупается большими компаниями (например, Google или Criteo), которые перепродают их своим клиентам по принципу аукциона. Упрощенная схема проста – кто больше дал ставку за показ, тот и будет показывать свой баннер. Сам аукцион выглядит следующим образом:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]»

Представляем Вашему вниманию похожие книги на «Роман с Data Science. Как монетизировать большие данные [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]»

Обсуждение, отзывы о книге «Роман с Data Science. Как монетизировать большие данные [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x