В результате за два часа у вас сложится картина. Вам будет понятно, кого стоит дальше смотреть, а кого нет. Все познается в сравнении, вы сразу сравните кандидатов между собой, и это очень удобно. В следующий этап попадают несколько человек, с ними уже проводятся индивидуальные собеседования. С помощью этой несложной схемы я успешно нанял нескольких стажеров в двух компаниях. С ними я долго работал, почти все они выросли в отличных специалистов. Это была моя лучшая инвестиция времени в наем.
Со специалистами сложнее. В такую группу их не собрать, требования к их квалификации выше. А еще на рынке труда существует серьезный перекос. Совсем недавно мне нужно было нанять двух человек: инженера по данным и аналитика данных. Как вы думаете, на какую вакансию откликнулось больше кандидатов? Задам еще один вопрос: кого у нас в стране больше – гитаристов или барабанщиков? Я трижды играл на шоу #ROCKNMOB – это такой масштабный флешмоб для музыкантов-любителей: собирается толпа вокалистов, басистов, гитаристов и ударников, и банда из трех сотен человек пилит рок-хиты, от Queen до Rammstein. На одно из шоу было заявлено 27 ударников и 151 гитарист. Эта статистика более-менее отражает распределение сил в природе: парень с гитарой – это сексуальный архетип (я уже написал, что играю на электрогитаре?), и выглядит он всегда круче барабанщика. А еще гитару купить проще, чем барабанную установку. Инженеры по данным проигрывают аналитикам в еще более грустной пропорции: 95 % откликов приходит на вакансию data scientist. Они прямо как гитаристы! При этом большинство имеют крайне низкую квалификацию и очень скромный послужной список, но чувствуют себя опытными «сержантами». В этом тоже виноват хайп!
Аналитиков данных я собеседую так: делаю первым звонок на 15 минут, задаю несколько несложных вопросов на понимание концепции машинного обучения. Если все ок, приглашаем на собеседование. Первое собеседование делится на две части: полчаса общаемся на тему машинного обучения, от азов до более сложных вещей. Во второй части задаем инженерные вопросы, например, какие-то вещи делаем на SQL. Потом устраиваем еще одно собеседование – решаем простейшую задачу машинного обучения. Буквально – садимся вместе за один компьютер, и кандидат выполняет задание, а я в это время задаю вопросы, чтобы убедиться, что он понимает, что и почему делает, действительно ли кандидат – практик. Обычно это сразу видно по скорости написания кода. В целом этих собеседований достаточно, чтобы оценить человека и сделать ему оффер.
Тема увольнения обычно стыдливо замалчивается, но оно даже важнее найма. Популистские высказывания в духе «нанимай медленно, увольняй быстро» я не поддерживаю. К сотрудникам нужно относиться по-человечески. Расставаться тоже нужно по-человечески, это важная часть корпоративной культуры. Увольнения происходят с двух сторон: по инициативе сотрудника и по инициативе работодателя. В моей практике первых было больше. Главная причина – мало машинного обучения, а ведь на курсах рассказывали, что этого будет много. Наука сильно расходится здесь с жизнью. Не устаю повторять, что реального машинного обучения в проектах машинного обучения 5–10 % времени. После такого опыта я стал целенаправленно отсеивать таких кандидатов-мечтателей на этапе собеседования. Вторая причина – сотрудник сильно вырос или устал долго работать на одном проекте. В таких случаях я обычно помогаю ему найти новое место работы, используя свои связи.
Причины уволить сотрудника могут быть разными – откровенно лажает, не вписывается в нашу аналитическую культуру. Но я никогда не тороплю события, ведь я также могу ошибаться. Для начала советуюсь с командой, с каждым отдельно. Если получаю негативные отзывы – это практически всегда означает, что нужно расставаться. Можно попробовать поговорить, подкинуть проекты, но обычно это не работает. Я наблюдал за карьерой уволенных и обратил внимание, что часто эти сотрудники находят нормальную работу и приживаются там. То есть они не были плохими – просто они не подошли нам, и это нормально.
Кому подчиняются аналитики
В идеале аналитики должны быть независимы от менеджеров, которых они оценивают. Тут принцип – кто платит, тот и музыку заказывает. Не может сотрудник менеджера объективно оценить его работу. Решать задачи отдела может (помните про децентрализацию из прошлой главы?), но оценивать – нет. Здесь нужна независимость от операций. Я бы рекомендовал, чтобы центральный аналитический отдел подчинялся генеральному директору, финансам или IT. Список дан в порядке приоритета. У меня был опыт подчинения генеральному директору, директору по маркетингу и IT. Первый вариант был самым лучшим опытом – внешнее давление минимально. Но в этом есть и проблема: как правило, менеджеры не знают, как управлять аналитикой, а генеральному директору еще и времени не хватает. Руководителю аналитики придется проявить недюжинную самостоятельность. Я лично получал задания в духе: «найди что-нибудь интересненькое». Эту книгу я начал писать в том числе и для того, чтобы ее прочитали топ-менеджеры, которым подчиняется аналитика. Мне бы этого очень хотелось!
Читать дальше
Конец ознакомительного отрывка
Купить книгу