Джон Келлехер - Наука о данных. Базовый курс

Здесь есть возможность читать онлайн «Джон Келлехер - Наука о данных. Базовый курс» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Альпина Паблишер, Жанр: Базы данных, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука о данных. Базовый курс: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука о данных. Базовый курс»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сегодня наука о данных используется практически во всех сферах: вы видите подобранные специально для вас рекламные объявления, рекомендованные на основе ваших предпочтений фильмы и книги, ссылки на предполагаемых друзей в соцсетях, отфильтрованные письма в папке со спамом.
Книга знакомит с основами науки о данных. В ней охватываются все ключевые аспекты, начиная с истории развития сбора и анализа данных и заканчивая этическими проблемами, связанными с конфиденциальностью информации. Авторы объясняют, как работают нейронные сети и машинное обучение, приводят примеры анализа бизнес-проблем и того, как их можно решить, рассказывают о сферах, на которые наука о данных окажет наибольшее влияние в будущем.
«Наука о данных» уже переведена на японский, корейский и китайский языки.

Наука о данных. Базовый курс — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука о данных. Базовый курс», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Высокая безопасность.База данных обеспечивает контролируемый и поддающийся проверке доступ к данным, увеличивая производительность специалиста и поддерживая нормы безопасности. Кроме того, машинное обучение в базе данных позволяет избежать рисков, присущих процессу извлечения и загрузки данных на альтернативные серверы. К тому же традиционный процесс обработки данных приводит к созданию множества копий (а иногда и разных версий) наборов данных в разных хранилищах организации.

Масштабируемость.База данных может легко масштабировать аналитику по мере увеличения объема данных благодаря алгоритмам машинного обучения. Программное обеспечение баз предназначено для эффективного управления большими объемами данных с использованием нескольких серверных процессоров и памяти, что позволяет выполнять алгоритмы машинного обучения параллельно другим задачам. Базы данных также очень эффективны при обработке больших наборов данных, которые не помещаются в память. Сорокалетняя история развития баз гарантирует, что наборы данных будут обработаны быстро.

Режим реального времени.Модели, разработанные с использованием алгоритмов машинного обучения в базе данных, могут быть немедленно развернуты и использованы в средах реального времени. Это позволяет интегрировать модели в привычные приложения и предоставлять прогнозы конечным пользователям и клиентам.

Развертывание в среде эксплуатации.SQL — это язык базы данных, который может быть использован для доступа к алгоритмам и моделям машинного обучения в базах. Модели, разработанные с использованием автономного ПО для машинного обучения, возможно, придется перекодировать на другие языки программирования, прежде чем они смогут быть развернуты в корпоративных приложениях. Но это не относится к машинному обучению в базе данных. SQL можно использовать и вызывать любым языком программирования и инструментом науки о данных. Это значительно упрощает задачу включения модели из базы данных в производственные приложения.

Многие организации используют преимущества машинного обучения в базе данных. Среди них встречаются как небольшие компании, так и крупные. Вот примеры организаций, использующих эту технологию:

• Fiserv — американский поставщик финансовых услуг, который занимается выявлением и анализом мошенничества. Он перешел от работы с несколькими поставщиками технологий хранения данных и машинного обучения к использованию машинного обучения в своей базе данных. В частности, эта технология позволяет сократить время создания/обновления и развертывания модели обнаружения мошенничества с почти недели до нескольких часов.

• Компания 84.51° (формально Dunnhumby, USA) использовала множество различных аналитических решений при создании моделей для своих клиентов. Обычно каждый месяц более 318 часов уходило на перемещение данных из базы на сервера машинного обучения и обратно. При этом на создание моделей тратилось еще как минимум 67 часов. Компания внедрила алгоритмы машинного обучения непосредственно в базу данных. Как только данные перестали покидать базу, экономия времени сразу составила более 318 часов. Поскольку база данных использовалась в качестве вычислительного инструмента, специалисты смогли масштабировать аналитику и время создания или обновления моделей машинного обучения сократилось с 67+ часов до 1 часа. Это дало экономию 16 дней. Теперь они могут получать результаты значительно быстрее и начинать взаимодействие с клиентами намного раньше, вскоре после совершения ими покупки.

• Wargaming — создатели World of Tanks и многих других игр — использует машинное обучение в базе данных, чтобы моделировать и прогнозировать взаимодействие с более чем 120 млн своих клиентов.

Данные в мире Hadoop

Хотя современная база данных невероятно эффективна для обработки транзакций, в эпоху больших данных для управления разнообразными формами данных и их долгосрочного хранения требуется новая инфраструктура. Современная база данных может справляться с объемами до нескольких петабайт, но при таком масштабе традиционные решения для баз могут стать чрезмерно дорогими. Этот вопрос стоимости обычно упирается в вертикальное масштабирование. В традиционной парадигме чем больше данных должна хранить и обрабатывать организация в течение необходимого срока, тем больший ей требуется сервер, а это увеличивает стоимость его конфигурации и лицензирования баз данных. Традиционная технология позволяет запрашивать и принимать миллиард записей ежедневно, но такой масштаб обработки обойдется в несколько миллионов долларов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука о данных. Базовый курс»

Представляем Вашему вниманию похожие книги на «Наука о данных. Базовый курс» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука о данных. Базовый курс»

Обсуждение, отзывы о книге «Наука о данных. Базовый курс» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x