Андреас Вайгенд - BIG DATA. Вся технология в одной книге

Здесь есть возможность читать онлайн «Андреас Вайгенд - BIG DATA. Вся технология в одной книге» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2018, ISBN: 2018, Издательство: Литагент 5 редакция, Жанр: Базы данных, Прочая околокомпьтерная литература, Справочники, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

BIG DATA. Вся технология в одной книге: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «BIG DATA. Вся технология в одной книге»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Информация как таковая становится самой значительной отраслью экономики, и базы данных знают о каждом конкретном человеке больше, чем известно ему самому. Чем больше информации о каждом из нас попадает в базы данных, тем в меньшей степени мы существуем.

BIG DATA. Вся технология в одной книге — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «BIG DATA. Вся технология в одной книге», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Специфические особенности межличностных коммуникаций не ограничиваются областью романов. Представьте себе менеджера, интервьюирующего кандидатов на вакансию. Одна из особенно перспективных претенденток подчеркивает свои отличные отношения с большой фирмой. Менеджер может достаточно хорошо знать кого-то из этой фирмы и просто позвонить ему, чтобы поинтересоваться его мнением. Или в качестве альтернативы он может попросить претендентку предоставить характеристику ее профессиональных связей и контактов, «заверенную» компанией-инфопереработчиком. Возможно, ему будет интересно изучить силу «ребер», связывающих особенно ценного клиента и соискателя должности. Возможно также, что ему будет интересен не столько этот важный клиент, сколько диапазон отраслевых контактов потенциальной сотрудницы, и в этом случае будет полезно оценить, насколько особенности коммуникаций претендентки соответствуют заявленным. Это может оказаться более полезным для определения того, насколько работа, требующая постоянного и разнообразного общения, будет интересна претендентке. Рекомендации инфопереработчика будут во многом зависеть от его оценки сочетания исследования и использования. Возможно, менеджеру предстоит решить, что станет главной задачей новичка – развитие существующих деловых связей или поиск новых.

Насколько комфортным будет для вас требование представить анализ особенностей ваших деловых связей? Захотите ли вы получить симметричную информацию о менеджере нанимателя, по аналогии с возможностью просмотра профайлов интересовавшихся вами в LinkedIn? А как насчет особенностей коллектива в целом? Такой анализ может помочь в подготовке к интервью и с точки зрения понимания того, как лучше всего представить себя, и с точки зрения информированности о внутренних проблемах компании, которые хотелось бы разъяснить в ходе беседы. Подобные характеристики могут стать мощным инструментом принятия решений – и ваших собственных, и в отношении вас.

Министерство производства социальных данных

У меня есть знакомый, назовем его Джо, который решил опробовать Facebook, чтобы понять причины повального ажиотажа вокруг этой платформы. Джо немного за шестьдесят и он очень щепетилен в вопросах неприкосновенности своей частной жизни. Идея выложить персональные сведения в интернет его не привлекала, и он зарегистрировался под вымышленным именем. Он не стал френдить своих знакомых, поскольку не желал быть узнанным. А заводить липовых друзей он, в отличие от Ребекки, не собирался. В социальном графе его узел был полностью изолирован. Неудивительно, что, заходя по утрам в Facebook, Джо не находил там ничего особенно полезного. Новости и информация не представляли для него интереса. Впечатления от Facebook у Джо были очень так себе. Но разве могло быть иначе? Facebook – не газета «Нью-Йорк таймс», которая сообщает одни и те же подготовленные редакцией новости всем подряд. Джо не понял, что алгоритм новостной ленты Facebook подразумевает предоставление информации в обмен на информацию. Facebook не является готовым решением.

В своем отношении к этой платформе Джо не одинок. Преподаватель Университета штата Иллинойс Кэрри Карахалиос провела исследование на тему новостной ленты Facebook и установила, что 62,5 процента его участников не имели представления о том, что получаемая ими информация проходит предварительную обработку. В рамках своего исследования Карахалиос давала его участникам возможность сравнить то, что опубликовали их знакомые в Facebook за день, с тем, что появилось в их новостных лентах. Некоторые были шокированы тем, что алгоритм не показывает им посты их близких родственников и друзей – они считали, что эти люди просто не слишком активны на сайте.

Чтобы сделать процесс обработки информации более прозрачным, Карахалиос и ее коллеги из Университета Иллинойса и Университета Мичигана разработали программу FeedVis, которая помогает пользователям понять, каким образом их лайки, комментарии и посты влияют на то, что им показывают, и дает возможность посмотреть альтернативные варианты новостной ленты [193]. На первом этапе пользователям дают возможность сравнить их персонализированную новостную ленту Facebook с хронологически представленным контентом, опубликованным всеми их друзьями, так называемой полной лентой. На втором этапе пользователям дают представление о вкладе их друзей, распределенных на три группы в соответствии с долей их контента, в персонализированную новостную ленту – «редко» (менее 10 процентов), «время от времени» (45–55 процентов) и «как правило» (90 и более процентов) [194]. Затем пользователь учится перемещать контент знакомых из скрытого режима в открытый или переводить друзей из одной категории в другую. В результате получаются версии новостной ленты, составленной исходя из личных предпочтений пользователя.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «BIG DATA. Вся технология в одной книге»

Представляем Вашему вниманию похожие книги на «BIG DATA. Вся технология в одной книге» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «BIG DATA. Вся технология в одной книге»

Обсуждение, отзывы о книге «BIG DATA. Вся технология в одной книге» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x