Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов

Здесь есть возможность читать онлайн «Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Издательство: Литагент Альпина, Жанр: popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как вытащить из данных максимум. Навыки аналитики для неспециалистов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Дата-грамотность, то есть способность ориентироваться в мире данных, – ключевой навык сегодняшнего дня. Ежедневно в соцсетях публикуются миллиарды сообщений, электронные почтовые ящики по всей планете гудят от писем, а каждый подключенный к интернету автомобиль производит терабайты данных, не говоря уже об онлайн-магазинах, платежных системах и государственных цифровых сервисах. Однако работать с данными, анализировать их и использовать их для бизнеса по-прежнему умеет меньшинство, а специалистов катастрофически не хватает.
Для тех, кто хочет научиться говорить на языке данных уверенно, признанный эксперт в области дата-грамотности Джордан Морроу и написал свою книгу. Это практическое руководство позволит даже неспециалисту освоить четыре базовых уровня аналитики и узнать, как принимать эффективные решения на основе данных, чтобы извлекать максимум из информации и быть успешным в быстро меняющемся цифровом мире.

Как вытащить из данных максимум. Навыки аналитики для неспециалистов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как вытащить из данных максимум. Навыки аналитики для неспециалистов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Допустим, этот спортсмен – вы. Вы давно не бегали, но кто-то из ваших друзей, родных или коллег участвует в забегах. Вы видите, как это их воодушевляет, постоянно слушаете их разговоры (я сам бегун и прекрасно понимаю, что меня сложно заставить замолчать, если уж я оседлал любимого конька). И вы решаете тоже записаться на забег. До него остается несколько месяцев. Вы записались, но у вас нет стратегии тренировок, вы не изучили трассу, вы не представляете, как правильно питаться и сколько нужно пить жидкости, – однако тренируетесь и едите, зная, что это необходимо. Кроме того, не имея стратегии, вы не знаете, какие вложения требуются для осуществления вашей мечты.

И вот наступил день забега. Вы стоите у стартовой линии, чувствуя себя более или менее подготовленным. У вас с собой, возможно, запас пищи и воды, и вы надеетесь, что тренировки помогут вам дойти до финиша. Но на самом деле вы не готовились должным образом – хотя, конечно, кое-как тренировались и даже купили спортивную форму. Если вы бежите полумарафон, то, возможно, справитесь с забегом, пусть и с трудом. Но и в полном, и в ультрамарафоне вам, скорее всего, придется сойти с дистанции.

А теперь представьте другой подход. Вы записываетесь на забег уже после того, как выработали стратегию, которая поможет вам добиться результата. Вы точно знаете, какое снаряжение вам необходимо, сколько питательных веществ и жидкости нужно вашему организму. Вы обратились к хорошему тренеру, который проследит за процессом вашей подготовки, давая необходимые указания. Итак, тренировки завершены, и вы выходите на старт. Теперь вы дойдете до финиша на любой дистанции – через боль, через усталость, но дойдете. Вы знали, что нужно делать, и достигли успеха именно благодаря стратегии и правильной подготовке.

В целом эти примеры наглядно показывают, что нужно организации от стратегии в сфере данных и их анализа. Слишком долго руководители полагались на более бессистемный подход. Они знали, что нужно инвестировать в данные и аналитику, но делали недостаточно, не разобравшись, какое снаряжение и зачем они приобретают (и подходит ли оно им вообще). Они не обращались к «тренерам», которые могли бы помочь им разработать и воплотить стратегию. А потом обнаруживалось, что инвестиции – порой миллионы долларов – не дают ожидаемых результатов. К несчастью, таких руководителей и компаний очень много.

Организация должна построить стратегию получения и использования данных, чтобы расширять видение, ставить цели и решать задачи. На сегодня большинству организаций во всем мире не хватает такой стратегии.

При отсутствии стратегии навыки обращения с данными у сотрудников только ухудшаются. Вместо того чтобы выработать четкую стратегию, определяющую и обеспечивающую поток инвестиций в ПО, технологии и обучение персонала, компании просто покупают ПО и технологии, рассчитывая, что все как-то само собой заработает. Налицо подмена понятий: руководители думают, что технологии – это и есть стратегия, и навязывают их сотрудникам. Но в таком случае стратегия не определяет, какую технологию использовать. В результате сотрудники отвергают новшества и возвращаются к старым способам решения задач. А новая технология как ненужная игрушка, которая лежит на полке и пылится.

Это приводит к двойной проблеме. Во-первых, ПО, купленное компанией, не внедряется или не используется сколько-нибудь эффективно. Во-вторых, вместо совершенствования навыков работы с данными сотрудники компании лишь еще больше отстают, потому что не желают осваивать программы и технологии, которые были приобретены, казалось бы, для их удобства.

Данные: что дальше?

Итак, мы выяснили, что при нехватке у сотрудников соответствующих навыков данные не используются достаточно эффективно. И что же делать? Действительно ли необходимо бороться с этим недостатком и ликвидировать пробелы – или все-таки можно продолжать работать как раньше? Ответ очевиден: ликвидировать пробелы необходимо!

Как уже было сказано, к 2025 году будет производиться примерно 463 эксабайта данных ежедневно: это наше будущее. Давайте еще нагляднее, без примеров с DVD: один эксабайт – это единица с 18 нулями. Так что представьте себе число 463 и припишите к нему 18 нулей. По другим прогнозам, к 2025 году количество производимых ежедневно данных будет равняться 175 секстибайтам, а секстибайт – это единица с 21 нулем: 1 секстибайт равен триллиону гигабайт [14] Morris, T. (2020). How Much Data by 2025? [Blog], Microstrategy, 6 January. https://www.microstrategy.cn/us/resources/blog/bi-trends/how-much-data-by-2025 . . Так какой же прогноз верен? Или лучше задать другой вопрос: а так ли это важно? Ведь это просто очень много данных , и нет никаких сомнений, что где-то среди них скрывается много ценных знаний. И мы снова возвращаемся к той же проблеме: если нам так не хватает навыков в обращении с данными, смогут ли отдельные люди и организации воспользоваться этим огромным объемом данных с выгодой для себя? Или большинству придется бессильно наблюдать, как организации, умеющие использовать данные, легко обходят конкурентов?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

Представляем Вашему вниманию похожие книги на «Как вытащить из данных максимум. Навыки аналитики для неспециалистов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

Обсуждение, отзывы о книге «Как вытащить из данных максимум. Навыки аналитики для неспециалистов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x