Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов

Здесь есть возможность читать онлайн «Джордан Морроу - Как вытащить из данных максимум. Навыки аналитики для неспециалистов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Издательство: Литагент Альпина, Жанр: popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как вытащить из данных максимум. Навыки аналитики для неспециалистов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Дата-грамотность, то есть способность ориентироваться в мире данных, – ключевой навык сегодняшнего дня. Ежедневно в соцсетях публикуются миллиарды сообщений, электронные почтовые ящики по всей планете гудят от писем, а каждый подключенный к интернету автомобиль производит терабайты данных, не говоря уже об онлайн-магазинах, платежных системах и государственных цифровых сервисах. Однако работать с данными, анализировать их и использовать их для бизнеса по-прежнему умеет меньшинство, а специалистов катастрофически не хватает.
Для тех, кто хочет научиться говорить на языке данных уверенно, признанный эксперт в области дата-грамотности Джордан Морроу и написал свою книгу. Это практическое руководство позволит даже неспециалисту освоить четыре базовых уровня аналитики и узнать, как принимать эффективные решения на основе данных, чтобы извлекать максимум из информации и быть успешным в быстро меняющемся цифровом мире.

Как вытащить из данных максимум. Навыки аналитики для неспециалистов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как вытащить из данных максимум. Навыки аналитики для неспециалистов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, в целом только один из пяти участников исследования уверен в своих навыках обращения с данными, так что для руководителей организаций должен быть очевиден огромный пробел, который необходимо заполнить. Здесь и кроется корень проблемы: если организации хотят извлечь выгоду из данных и аналитики, но при этом нужных специалистов критически не хватает, то как, собственно, извлечь эту выгоду? И какое влияние нехватка дата-грамотности и уверенности в умении обращаться с данными оказывает на организации? Не отражается ли этот недостаток на прибыли?

Влияние человеческого фактора на недостаток знаний о данных трудно переоценить. В исследовании 2019 года было выявлено, что лишь 32 % опрошенных топ-менеджеров утверждают, что способны извлечь измеримую пользу из данных, и 27 % – что их проекты в сфере данных и аналитики «дают им применимые на практике знания» [13] Desjardins, J. (2019). How Much Data is Generated Each Day? World Economic Forum, 17 April. https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f . . Конечно же, это тоже следствие недостаточной дата-грамотности. Когда вспоминаешь, что миллионы, а то и миллиарды долларов вкладываются в аналитические проекты, ПО и технологии, связанные с данными, то поневоле задумываешься, сколько из них потрачено впустую. И если среди людей в целом лишь каждый пятый уверен в своих навыках обращения с данными, а топ-менеджеры не осознают ценность этих навыков, то потери действительно огромны.

Какое же влияние нехватка дата-грамотности оказывает на нас, отдельно взятых людей? В упомянутом исследовании приведена лишь общая количественная оценка соответствующих навыков. Но если задуматься о сути исследования, то становится ясно: из-за отсутствия необходимых навыков люди совершенно не справляются с новыми технологиями и потоком данных. Более трети участников исследования признались: если бы перед ними стояла задача, которую можно решить с помощью данных, они предпочли бы искать иные способы ее решения. А целых 14 % в таком случае постарались бы вообще уклониться от этой задачи. Картина всеобщей перегруженности данными представляется еще более убедительной, если обрисовать ее в виде рабочих часов, потерянных в результате неумения пользоваться данными и технологиями: более 5 рабочих дней (43 рабочих часа) на сотрудника за год. Сколько это в реальном денежном выражении? Очень немало! Согласно исследованию, для американской экономики эти потери составляют около 100 миллиардов долларов в год. По-вашему, это огромная цифра? Тогда давайте задумаемся, почему люди не справляются с данными и каковы причины такой нехватки навыков.

Данные: в чем причина нехватки навыков?

У такого огромного пробела в знаниях и навыках наверняка есть какие-то причины. Каковы же они? Очевидно, что факторов множество: от недостатков в системе образования до проблем с технологиями и программным обеспечением и даже до производства данных как такового. Сейчас мы подробно рассмотрим эти возможные причины, а вы задумайтесь, как они могли повлиять на вашу карьеру и умение извлекать пользу из данных (будь то на личном уровне или во взаимодействии с людьми, с которыми вы работаете).

Программное обеспечение и технологии

Возможно, вы задумаетесь: как ПО и технологии могут быть причиной нехватки навыков дата-грамотности? Разве все не должно быть наоборот? Разве они не уменьшают этот пробел? Что ж, ответ вроде бы очевиден: да, должно быть наоборот; да, уменьшают. Задача ПО и технологий – помогать нам решать задачи, связанные с данными и их анализом, и получать реальные бизнес-результаты. Они должны дополнять человека, если он достаточно образован и обучен, чтобы ими пользоваться.

Проблема заключается в том, как именно вложения в технологии и ПО осуществляются людьми и организациями. Представьте себе, что вы руководите компанией и пытаетесь выстроить стратегию работы с данными, которая должна помочь вам добиться успеха в эпоху цифровой революции. К вам приходит замечательный торговый агент и заявляет: «Наше новое программное обеспечение предназначено для того, чтобы расширить возможности для решения задач по данным и аналитике». Или обещает: «Наша программа решит все проблемы с данными и их анализом». Словом, чтобы убедить вас купить его ПО, он засыплет вас самыми разнообразными убедительными аргументами. Он покажет вам примеры из практики и данные исследований. Полюбовавшись на все это, вы решите вложить свои деньги в ПО и внедрить его в своей организации. Когда организация обеспечивает всем своим работникам равный доступ к аналитическим программам, это называется «демократизация данных». Открою небольшой секрет. С одной стороны, демократизация данных – именно то, что должна проделать каждая компания. С другой – это проблема. Давайте рассмотрим ее немного подробнее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

Представляем Вашему вниманию похожие книги на «Как вытащить из данных максимум. Навыки аналитики для неспециалистов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

Обсуждение, отзывы о книге «Как вытащить из данных максимум. Навыки аналитики для неспециалистов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x