Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики

Здесь есть возможность читать онлайн «Билл Фрэнкс - Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Array Литагент «Альпина», Жанр: personal_finance, foreign_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
  • Автор:
  • Издательство:
    Array Литагент «Альпина»
  • Жанр:
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-9614-4132-1
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Еще несколько лет назад руководители многих организаций, чей бизнес генерирует большие объемы операционных данных, сомневались в ценности подхода Big Data. Сегодня те из них, кто продолжает сомневаться, упускают непрерывно растущие возможности этого подхода, повышая риск потери доли рынка и перехода в разряд отстающих и устаревающих. Но с чего начать, если вы хотите вывести свою организацию на новый научно-технологический уровень, к принятию решений с использованием Big Data? Ответ на это дает Билл Фрэнкс, директор по аналитике компании Teradata и преподаватель Международного института аналитики, за плечами которого – более чем 20-летний опыт работы в крупных аналитических проектах реального бизнеса. «Революция в аналитике» – это пошаговое практическое руководство по внедрению операционной аналитики и автоматизации принятия решений. Специалисты по аналитике, ИТ и все, кто хочет сделать свою организацию успешнее на основе подхода Big Data, по достоинству оценят работу Фрэнкса.

Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Идея не является плохой… если ее можно протестировать

Популярная поговорка гласит, что плохих идей не бывает. На деле же плохие идеи бывают, и наша задача – их избежать. К счастью, аналитика позволяет довольно легко проверить, является ли данная идея хорошей или плохой. Насколько бы безумной ни казалась идея, но, если она может быть протестирована, ее следует протестировать. Объективные результаты, основанные на аналитике, покажут, работоспособна она или нет.

Сегодня во многих случаях разработать и провести такие тесты можно быстро и дешево. Интернет-компании по максимуму задействуют эту возможность с упором на так называемый метод постоянного апробирования. На современном сайте электронной коммерции в любой момент могут тестироваться десятки, если не сотни или тысячи новых идей. Эти тесты могут варьироваться от крупных экспериментов, таких как тестирование совершенно нового облика сайта, до совсем незначительных, таких как изменение шрифта в описании товара. Сайты в случайном порядке показывают пользователям либо стандартный, либо тестовый контент, после чего при помощи аналитики оценивается, как нововведение повлияло на поведение пользователей. Подобное экспериментирование должно стать частью любой корпоративной культуры, а не только компаний электронной коммерции.

Тестируйте, тестируйте, тестируйте!

Концепции тестирования и экспериментального дизайна получили широкое распространение и были полностью доказаны. Благодаря доступным сегодня инструментам использовать эти методы стало гораздо проще, чем когда-либо в прошлом. Многие современные операционные системы позволяют легко протестировать новую аналитическую логику. Следовательно, нет оправданий для того, чтобы этого не делать.

Ранее мы уже говорили о том, что сначала надо создать базовый аналитический процесс, а затем уже масштабировать его до операционного уровня. Перед запуском аналитической производственной линии необходимо провести в небольшом масштабе тесты на подмножестве решений. Это позволяет проверить, как будет работать процесс в реальных условиях. Когда речь идет о физических сборочных линиях, например по производству потребительской электроники, внесение изменений может обойтись весьма дорого, поскольку потребует тщательной переналадки большого количества очень чувствительного и тяжелого оборудования. В случае же операционной аналитики, как правило, это не так. Все, что требуется, – просто ввести и протестировать новую аналитическую логику в операционных системах. Изменить строки кода в виртуальной «производственной линии» гораздо легче, чем переналадить тяжелое оборудование на реальной производственной линии. Простота тестирования новой логики практически не оставляет оправданий для отказа от тестирования новых идей.

Из всего вышесказанного вытекает одно важное следствие, а именно необходимость изменения модели финансирования аналитических проектов, когда дело касается обнаружения данных. Вместо того чтобы финансировать каждый проект в отдельности на основе надежно прогнозируемой рентабельности инвестиций в него, проектами следует управлять на портфельной основе. Другими словами, в конце года отдача, полученная от ресурсов, которые были потрачены на обнаружение данных, должна продемонстрировать, что предпринятые на протяжении года действия обеспечили хорошую совокупную доходность. Важно не то, сколько проектов в портфеле оказались неудачными, а то, что успешные проекты с лихвой компенсировали все неудачи.

Это потребует изменения подхода к бюджетированию, однако может значительно повысить продуктивность. Прежде всего, аналитическая команда должна составить список исследовательских проектов. Она должна быть уверена в том, что некоторые идеи обязательно окажутся работоспособными, хотя может и не знать наверняка, какие именно. Подобно тому как бэттер в бейсболе не станет связывать себя обязательством, сколько именно мячей он отобьет, так и аналитики не могут гарантировать успех отдельных исследовательских проектов. Главное для них – получить хороший средний показатель по итогам года. Таким же образом работает и венчурный капитал. Даже самые опытные венчурные капиталисты теряют все свои инвестиции в большинство стартапов. Однако оставшиеся в портфеле успешные стартапы оправдывают риски.

Не принимайте неудачи на свой счет

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики»

Представляем Вашему вниманию похожие книги на «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики»

Обсуждение, отзывы о книге «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x