Начались исследования по переходу на следующую топливную пару «керосин – жидкий кислород». Понятие «керосин» было весьма условным, поскольку здесь рассматривались различные продукты на основе керосина. Также начались и схемные проработки компоновки ЖРД, в которых один или оба компонента сначала переводились в газовую фазу. Полученные газы сначала использовались для привода турбин, а затем дожигались в камере сгорания двигателя. Так возникли схемы смешения топлив в камере сгорания по схемам «газ – жидкость», когда один из компонентов топлива полностью газифицировался, и «газ – газ», когда полностью газифицировались оба компонента. Вот с экспериментального изучения процессов смесеобразования в камере сгорания по схеме «газ – газ» я и начал свои первые исследовательские исследования в Нижней Салде. Двигатели по так называемой открытой схемы, где смесеобразование в камере сгорания осуществлялось по схеме «жидкость – жидкость», также продолжались разрабатываться. Ленинградские двигатели С. П. Изотова (завод имени В. Я. Климова), которые отрабатывались в Салде, работали по этой схеме. В этой схеме, газ для привода турбины вырабатывался в газогенераторе, а после использования, «мятый газ» истекал через сопла, создавая дополнительную тягу.
В 1954–1957 гг. в ОКБ В. П. Глушко были разработаны четырёхкамерные кислородно-керосиновые двигатели РД-107 и РД-108 для первой и второй ступеней РН «Восток», с помощью которой был осуществлён запуск первого искусственного спутника Земли, а также первый полёт человека в космос. Эта же ракета Р -7, могла решать и военные задачи, для чего она, собственно, и разрабатывалась. В ракете применена «пакетная» компоновка, в которой одновременно запускались двигатели «боковушек» (РД – 107) и двигатели второй ступени (РД – 108). Такое схемное решение позволяло для воспламенения топлива использовать самую простейшую схему с «крестом» и пиропатронами.
Ракета пакетной схемы, типа Р-7, могла доставить ядерный заряд практически в любую точку земной поверхности. Казалось бы, что основная задача обороны страны решена. Однако, с развитием авиационных и космических средств наблюдения за земной поверхностью у вероятного противника, такая схема стала достаточно уязвимой для обнаружения готовящегося к запуску ракетную систему. Скрыть стартовую площадку с готовящейся к запуску ракетой стало практически невозможно. Появилась тандемная схема компоновки ракеты, где ступени ракеты располагались последовательно друг за другом. Но, в этом случае традиционная схема воспламенения, при запуске двигателя с «крестом» и пиропатронами, становилась неудобной поэтому, в некоторых случаях, стали применять химическое зажигание. Тандемная компоновка ракеты позволяла перейти к шахтному варианту старта. Одновременно шли поиски новой топливной пары, которая позволила бы решать вновь возникшие вопросы ракетной обороны. Были сформулированы новые требования к ракетному топливу. Конечно, новая топливная пара должна быть высокоэкономичной и позволять ракете находиться в заправленном состоянии практически неограниченное время (более 10 лет) для обеспечения высокой боеготовности. Такое топливо было создано и получило условное наименование «амил-гептил». Самым большим недостатком этой пары была высокая токсичность горючего (гептил), которое представляло собой продукт на гидразинвой основе. В качестве окислителя (амил) применялась высококонцентрированная азотная кислота, что привело к необходимости использовать коррозионностойкие материалы по всему тракту окислителя. Зато такие компоненты топлива были самовоспламеняющимися и проблемы воспламенения при их использовании не существовало. У зарубежного супостата также было подобное топливо, но с существенными отличиями по эксплуатационным свойствам. Так как, в основном, топливная пара «амил-гептил» стали применяться на боевых ракетах, то её часто стала называть «штатной парой» или «штатными компонентами», как это было принято в армейской терминологии.
С внедрением гептила появилась возможность получения высокого удельного импульса двигателя и при использовании жидкого кислорода в качестве окислителя. Такой двигатель РД-119 (8Д710) был создан и нашёл применение на ракетах серии «Космос». В конструкцию камеры РД–119, по сравнению с двигателями прототипами, был внесён ряд кардинальных изменений, направленных на улучшение энергомассовых характеристик, улучшили охлаждение внутренней стенки камеры, создав двухщелевой пояс дополнительного завесного охлаждения; отработана новая форсуночная головка, повысившая устойчивость рабочего процесса и обеспечившая большую полноту сгорания компонентов топлива. Эти мероприятия позволили получить наивысший для своего времени удельный импульс тяги в пустоте (352 единицы). При этом вследствие выбора рационального профиля сверхзвуковой части сопла, а также благодаря широкому использованию в конструкции камеры титановых сплавов удалось, несмотря на значительное увеличение выходного диаметра сопла, несколько уменьшить массу камеры сгорания. Воспламенение топлива в камере сгорания осуществлялось с помощью пирозажигательного устройства.
Читать дальше