
На рис. Iчерные круги указывают фактические размеры Барьера в пять различных моментов времени, а синие кривые — кажущиеся размеры и форму в восприятии неподвижного наблюдателя (также отмечен на рисунке), ожидающего прибытия света от Барьера. Математическое выражение для формы этих кривых легко получить, заметив, что время t , прошедшее с момента зарождения нововакуума, равно 2t 1+ t 2 , где t 1 — расстояние от центра Барьера до точки на кривой, a t 2 — расстояние от этой точки до наблюдателя.
Серые пунктирные линии очерчивают кажущийся край Барьера и представляют собой касательные к синим кривым. Они показывают путь света, задевшего Барьер, когда его размеры значительно уступали нынешним. Поэтому Барьер затеняет меньший участок небосклона, чем в том случае, если бы его размеры все время оставались такими. И даже в последний показанный на рисунке момент времени, когда Барьер нависает непосредственно над нашим наблюдателем, сектор небесной сферы, отсеченный им, составит лишь 120 градусов.

На рис . II показано, как растет угловой видимый размер Барьера с течением времени. Переменный допплеровский сдвиг светового излучения Барьера изображен схематически по контуру поверхности. Точное значение фактора синего смещения варьирует от V‾З = 1,732 в центре до 2/V‾З = 1,1547 по краю. Допплеровский сдвиг на краю поля зрения остается неизменным по мере расширения Барьера, поскольку наблюдаемый там свет всегда излучается под углом 90 градусов к направлению распространения (в системе отсчета, движущейся вместе с соответствующим сегментом Барьера).
Спиновые сети: только бы соединить…

Понемногу складывается впечатление, что известный афоризм Э. М. Форстера [125]— излишество. Теория, для которой строительными блоками Вселенной выступают математические структуры — графы, — которые соединяются друг с другом, а больше-то ничего и не делают.
Граф можно представить в виде множества точек — узлов , и набора линий, соединяющих эти узлы — ребер. Детали построения, например, длина и форма ребер, вообще говоря, безразличны для структуры графа. Единственная черта, по которой можно отличить один граф от другого — тип связывания узлов. Число ребер, сходящихся в один и тот же узел, называется его валентностью.
В квантовой теории графов, или КТГ, квантовое состояние, описывающее как геометрию пространства, так и поля материи, присутствующей в нем, построено из комбинаций графов. Теория обрела нынешнюю форму в работах яванского математика Куснанто Сарумпета , который в серии из шести статей, опубликованных с 2035 по 2038 гг., показал, что как общая теория относительности (ОТО), так и Стандартная Модель физики элементарных частиц (СМ) представляют собой аппроксимации единой теории — КТГ.

У графов Сарумпета долгая и славная родословная, которую можно проследить вплоть до работ Майкла Фарадея о «силовых линиях», соединяющих электрические заряды, и теории Уильяма Томсона об атомах как заузленных «вихревых трубках». Ближайшими предшественниками теории Сарумпета явились модель спиновых сетей Роджера Пенроуза, в которой рассмотрены трехвалетные графы с приписанным каждому узлу полуцелым числом, соответствующим возможному значению спина квантовой частицы. Пенроуз изобрел спиновые сети в начале 1970-х и продемонстрировал, как полный набор пространственных направлений может быть получен из простых комбинаторных принципов, применяемых к процессам обмена спином между двумя областями обширной сети.
Обобщение спиновых сетей позднее нашло место в различных вариантах квантовой теории поля (КТП). Волновая функция приписывает каждому возможному расположению частицы амплитуду вероятности, а спиновая сеть, погруженная в пространственную область, аналогичным образом приписывает амплитуду всем возможным полевым конфигурациям. Квантовые состояния, определенные в этом формализме, состоят из линий потока, текущего вдоль ребер сети.
Читать дальше