Александр Казанцев - Собрание сочинений в трех томах. Том 2. Клокочущая пустота.

Здесь есть возможность читать онлайн «Александр Казанцев - Собрание сочинений в трех томах. Том 2. Клокочущая пустота.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1989, ISBN: 1989, Издательство: Детская литература, Жанр: Фантастика и фэнтези, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Собрание сочинений в трех томах. Том 2. Клокочущая пустота.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Три научно-фантастических романа-гипотезы о некоторых загадках становления европейской цивилизации. Все произведения объединены общими героями, жившими в о Франции в XVII веке. Это ученые, мыслители прошлого: Пьер Ферма, Рене Декарт, Кампанелла, Сирано де Бержерак, сыгравшие важную роль в развитии культуры и научной мысли.
Художник Ю. Г. Макаров.
Оформитель А. Е. Ганнушкин. subtitle
5 0
/i/36/730036/i_001.jpg
empty-line
6

Собрание сочинений в трех томах. Том 2. Клокочущая пустота. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эта «формула Счастья» воплотилась у Сирано в его светлую мечту, представляясь ему яркой, наполненной внутреннего содержания и вместе с тем строгой и точной, как математическое выражение.

И, отложив последние страницы трактата, он, словно продолжая его, погружался в дремучий лес цифр, отыскивая тропы закономерностей, ведущие к решению хитрой задачи Ферма.

Тупик досадных неудач искушал его надменной мыслью, что «задача Ферма» не имеет практического смысла и подобна развлекательным ребусам, какими тешатся в гостиных [103].

Однако скоро эти малодушные сомнения вытеснились ощущением близости волнующего открытия!

Если бы удалось восстановить искания Сирано, то они предстали бы аккуратными строками равенств и неравенств, получающихся при сложении двух наименьших чисел в возрастающей степени и сравнения их суммы с ближайшим значением целого числа в той же степени. То есть увидели бы анализ разложения степеней с выявлением получающихся, тоже наименьших остатков.

И Сирано рассуждал, подводя итог своим исследованиям: отрезок прямой линии естественно разделится на два меньших отрезка, ибо все целые числа, выражающие размеры отрезка, возведены лишь в первую степень, то есть неизменны.

Квадрат гипотенузы прямоугольного треугольника нацело делится на квадраты катетов (тоже в целых числах) в соответствии с теоремой Пифагора.

Куб же, уже пространственная фигура с размерами в целых числах, может разделиться на два меньших куба со сторонами в целых числах, однако уже с остатком, равным двум! То есть практически он делится не на два, а на четыре куба, поскольку два дополнительных кубика со сторонами, равными единице, и уложатся в остаток, равный двум!

А вот квадрато-квадрат, фигура сверхпространственная, тоже делится нацело, но уже на шесть квадрато-квадратов (при остатке = 64!).

Дальше же еще занимательнее и многозначительнее!

Пятая степень (при остатке = 2002) разлагается нацело на 13 целых чисел в пятой степени!

Шестая (при остатке = 69 264) — на 48 целочисленных слагаемых в шестой степени!

Становится совершенно очевидным, что число членов многочлена, состоящего из целых чисел в той же степени, что и разлагаемое целое число, растет вместе со степенью и никак не может равняться двум, что и требовалось доказать в предложенной Пьером Ферма теореме!

О каких же двух слагаемых в той же степени, что и их сумма, может идти речь, начиная с куба? Нужны ли еще доказательства?

И Сирано горько пожалел, что метр Ферма далеко в Тулузе, куда ему не добраться без коня и денег!

А нельзя ли вывести для Ферма формулу, которая отразила бы закономерности, полученные при анализе цифр, притом ввести в формулу лишь одну переменную — показатель степени!

С исступленной настойчивостью принялся Сирано за работу! Формула далась не сразу. Лишь после бесчисленных попыток достиг он желанного ее изящества.

К величайшей своей радости, он увидел, что математическая формула как бы совпадает по форме с определением счастья Франсуазы. И Сирано назвал свою находку «Формулой Франсуазы»!

(n — 1)

(2 n+ 1) n= (2n) n+ (2n — 1) n+ n————(n — 2) n.

8

«Счастье — свобода, равенство, братство, любовь!»

Почему только до четвертой степени верна формула? Какую закономерность Природы она отражает?

Четвертая степень! Если куб — высота, ширина и длина, то квадрато-квадрат требует еще одного пространственного измерения! И тут Сирано вспомнил о Тристане, о его объяснении свернутой в неком четвертом пространственном измерении Вселенной! Эврика! Нежданно, блуждая в лесу степеней, он получил математическое подтверждение существования четырех измерений нашего пространства!

И Сирано вдруг пустился в пляс по комнате, насмерть перепугав вбежавшую мать и удивив появившегося в дверях младшего брата.

Сирано кинулся на шею матери и стал покрывать поцелуями ее уже морщинистое лицо.

— Нашел! Нашел! — вне себя от восторга кричал он, подобно древнему Архимеду, выскочившему из ванны с пониманием закона, названного потом его именем. И он закружил Мадлен по комнате.

— Остановись же, остановись, Сави! У меня сердце разорвется, — умоляла мать.

— Виват! — восклицал Сирано и, обращаясь к брату, стал говорить, хотя тот и не подготовлен был, чтобы понять его.

— Ведь никто же не удивляется, что замкнутость Вселенной подтверждается математически при сечении конусов, соприкасающихся вершинами на общей оси. Это доказал Ферма, поворачивая секущую плоскость. Когда она параллельна основанию конусов — получаем окружность, повернем немного — и увидим эллипс, поворачивая еще… ну, поворачивай, — тормошил Савиньон юношу.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.»

Представляем Вашему вниманию похожие книги на «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.»

Обсуждение, отзывы о книге «Собрание сочинений в трех томах. Том 2. Клокочущая пустота.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x