Артур Кларк - Последняя теорема

Здесь есть возможность читать онлайн «Артур Кларк - Последняя теорема» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., СПб., Год выпуска: 2012, ISBN: 2012, Издательство: Эксмо, Домино, Жанр: Фантастика и фэнтези, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Последняя теорема: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Последняя теорема»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Соавторство Фредерика Пола и его друга, одного из основателей жанра научной фантастики, — это и громкое литературное событие, и наше прощание с великим Артуром Кларком, создателем пророческой «Космической одиссеи» и множества других шедевров.
В 1637 году один француз оставил на полях книги пометку, будто бы ему удалось доказать некую теорему, — но само доказательство до нас не дошло. Множество лучших умов столетиями билось над этой загадкой, и только в двадцать первом веке молодой шри-ланкийский математик сумел найти элегантное решение Последней теоремы Ферма. Вот только как предъявить его общественности и получить заслуженные лавры, если гениальный ученый брошен без суда в тюрьму и даже подвергается пыткам?
Впервые на русском языке!

Последняя теорема — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Последняя теорема», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

История самой знаменитой проблемы в математике начинается с краткой записи, оставленной как бы походя французским юристом из Тулузы, жившим в семнадцатом веке. Звали этого юриста Пьер де Ферма. Служба в юридической конторе отнимала у него не все время, и он любительски занимался математикой. Но следует отдать должное этому человеку: он имеет полное право называться одним из величайших математиков всех времен.

Эта знаменитая математическая проблема называется последней теоремой Ферма.

Одно из самых привлекательных свойств теоремы состоит в том, что ее совсем несложно понять. На самом деле человеку, сталкивающемуся с ней впервые, трудно поверить, что уже более трех столетий математики всего мира безуспешно бьются над задачкой настолько элементарной, что кажется, ее можно решить на пальцах.

Вообще-то проблема уходит корнями в далекое прошлое. Еще в пятом веке до нашей эры сам Пифагор выразил словами единственную математическую теорему, которая с тех пор превратилась в клише: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Те из нас, кто освоил математику на уровне средней школы, могут отчетливо представить себе прямоугольный треугольник и записать теорему Пифагора так:

a 2+ Ь 2= c 2.

Другие математики начали изучать вопросы, связанные с теоремой Пифагора, как только он эту теорему сформулировал (математики всегда так поступают). Выяснилось, что существует много прямоугольных треугольников, длина которых измеряется целыми числами и которые удовлетворяют вышеуказанному уравнению. Например, в треугольнике со сторонами, равными пяти и двенадцати единицам, гипотенуза будет равна тринадцати единицам… и конечно, 5 2плюс 12 2и в самом деле равняется 13 2. Кое-кто рассматривал другие возможности. К примеру, существует ли прямоугольный треугольник с подобным отношением кубов его сторон? То есть может ли a 2 плюс b 2 равняться c 2 ? И как насчет чисел в четвертой степени и вообще насчет чисел со степенью выше второй?

До появления механических калькуляторов, не говоря уже об электронных, математики тратили на подобные расчеты всю жизнь, исписывали горы бумаги. Так они поступили и с этой проблемой. Никто не нашел ответа. Забавное коротенькое уравнение работало только для квадратов, а для всех остальных степеней — нет.

И тогда все прекратили искать решения — Ферма остановил их одной-единственной строчкой, написанной от руки. Это заколдованное уравнение, работающее для квадратов, заявил он, никогда не будет работать для любой более высокой степени. Точка.

Что ж, большинство математиков опубликовали бы подобное утверждение в каком-нибудь научном журнале. Но Ферма был странноватым малым. Он поступил в своем стиле: взял да и написал пометку на полях книги древнегреческого математика Диофанта под названием «Арифметика». Вот она, эта пометка: «Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него».

Эта небрежная запись на полях стала такой важной именно потому, что в ней содержалось слово «доказательство».

Доказательство — мощное лекарственное средство в математике. Необходимость доказывать, то есть логическим путем демонстрировать, неоспоримую верность того или иного утверждения — вот что отличает математику от большинства естественных наук. Физики, к примеру, поступают довольно просто. Если физик швыряет пучок разогнанных до большой скорости протонов в алюминиевую мишень десять или сто раз и всегда получает один и тот же набор частиц, отлетающих от мишени, ему позволено предположить, что любой другой физик, вознамерившийся провести аналогичный опыт где бы то ни было, всегда получит точно такой же набор частиц.

Математику ничего подобного не позволяется. Его теоремы — это вам не статистика. Они должны быть точны. Ни один математик не сможет заявить, что его утверждение верно, до тех пор, пока он с помощью неоспоримой и безукоризненной логики не состряпает доказательство, демонстрирующее, что верность подтвердится всегда. Причем порой доказательство получается методом от противного: дескать, если бы то или это было не так, возникли бы очевидные и нелепые противоречия.

Математики сбились с ног в поисках доказательства, которым, по его утверждению, располагал Ферма. Многие великие умы — Эйлер, Гольдбах, Дирихле, Софи Жермен — и сотни менее известных всеми силами ловили ускользающее из рук подтверждение. Время от времени какой-нибудь истерзанный мученик науки вскакивал с радостным воплем «Эврика!». Таких эврик не счесть: только в начале двадцатого века за четыре года накопилось около тысячи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Последняя теорема»

Представляем Вашему вниманию похожие книги на «Последняя теорема» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Последняя теорема»

Обсуждение, отзывы о книге «Последняя теорема» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x