Особенность онкоклеток в том, что их генетические константы отличаются от констант обычных клеток. Это связано с тем, что онкогенная часть генома у них экспрессирована (открыта), а геном, отвечающий за дифференциацию клеток, перекрыт (репрессия генов). По каким-то малоизвестным причинам происходит переключение генома клеток на примитивные первичные программы, которые тормозят дифференциацию этих клеток и ликвидируют их апоптоз, т. е. естественное отмирание.
Скорость обмена веществ в онкоклетках намного выше, чем у обычных. Потребляют органики они намного больше, а диапазон оптимума существования в пределах этих констант намного меньше. Естественно, что в особых условиях метаболизма онкоклетки окажутся более уязвимы.
«Жадные» опухолевые клетки будут больше всего захватывать органические кислоты, что в свою очередь только усилит их катаболическую фазу. Таким образом, мы можем повернуть метаболизм опухолевых клеток с анаболизма на катаболизм, в то время как в простых клетках долго еще будет поддерживаться паритет между двумя этим фазами.
Благодаря гибким механизмам своего метаболизма организм легко настраивается на все колебания и изменения внутренней среды. Избыточное поступление кислот он сможет долго компенсировать мобилизацией эндогенной щелочной фазы. Одна часть последней будет изыматься из внутренних минеральных резервов, а другая — из органической части путем перестройки ряда веществ. Наша задача — не допускать такого компенсационного изымания ни из минеральной фазы, ни из органической, т. е. из эндогенных резервных средств, при этом максимально заменить органическую щелочную фазу на минеральную.
Энергия в росте онкоклеток
Анализ различных кислот показывает, что все они играют разные роли в различных органеллах и процессах жизнедеятельности клетки. Так, можно утверждать, что действие дихлоруксусной кислоты превалирует в плане активации работы митохондрий, а значит, в связанных с ними энергетических процессах, тогда как большая часть комплекса предлагаемых фруктовых кислот действует преимущественно на метаболическую сторону жизнедеятельности, в том числе и на инициирование катаболических процессов. Необходимо разобраться, на какую сторону жизнедеятельности клетки мы воздействуем при лечении онкологии.
Метаболизм и энергетика клетки — два разных маховика, но которые сцеплены и обусловливают друга друга. Но иногда они могут работать и порознь при снятии «сцепления», разобщения процессов. Тогда накопленная энергия может пойти не на синтез, а рассеиваться в виде тепла.
Многие путают энергетические и метаболические процессы, когда подразумевают одно, а пишут о другом.
Чтобы разобраться, на что мы действуем, проанализируем пример.
С. Скаков описывает излечение девушки, которая была больна крупной саркомой сустава. Фотографии рентгенограммы показали, что кость буквально растворилась в опухоли, ее практически не было. До этого больная прошла ряд курсов химической и лучевой терапии, оставался последний шанс — полная ампутация конечности, так как остальные способы лечения считались бесполезными, но пациентка отказалась.
Для увеличения количества кислорода в тканях она воспользовалась методом волевой ликвидации глубокого дыхания (ВЛГД) по Бутейко.
Впервые в медицинской практике был поставлен эксперимент, результаты которого подтвердили, что раковые клетки «не любят кислород». В течение нескольких месяцев применение ВЛГД не приводило к видимому эффекту. Тогда было решено увеличить время задержки дыхания до 3 минут. (Дыхательный цикл: пауза, 10 вдохов-выдохов и снова пауза.)
Чтобы достичь необходимой длительности задержки дыхания, больная целый месяц занималась с утра до вечера, спала по 4–5 часов, делала перерывы лишь на прием пищи.
В результате этих нечеловеческих усилий через несколько месяцев стало заметно уменьшение саркомы. Затем произошло чудо — через 3 месяца не только опухоль исчезла, но и восстановилась каким-то образом разрушенная полностью кость, вернулась подвижность сустава и руки. Рентгенограмма подтвердила эти факты, излечение было полным!
Суть этой методики лечебного дыхания, по мнению авторов, направлена на изменения концентрации СО 2(гиперкапния) с целью «закисления» крови. Но очевидно, что здесь одновременно с гиперкапнией шла и гипероксигенация, т. е. повышение уровня О 2. Авторы метода ошибочно предполагали, что растворение этого газа в крови приводит к образованию в ней углекислоты, а значит, и к повышению степени закисления крови. Закис лить кровь невозможно, так как это противоречит законам гомеостаза. Мною было введено понятие кислотно-щелочного потенциала, т. е. одновременного поднятия как уровня щелочной, так и кислотной фазы. Углекислота здесь в мегадозах выступала в роли оксигенатора, т. е. вещества, способствующего окислительным процессам О, причем в завышенных дозах она играла роль форсажа и тем самым повышала, порог чувствительности митохондрий к кислороду. Возник новый коридор субстратного поля, в пределах которого активность митохондрий была реализована заново. Механизм лечебного действия через дыхание здесь аналогичен применению с пищей огромного количества низкомолекулярных органических кислот. Поэтому эти методы синергичны и только повысят эффективность друг друга.
Читать дальше
Конец ознакомительного отрывка
Купить книгу