Дэвид Склански - Математика покера от профессионала

Здесь есть возможность читать онлайн «Дэвид Склански - Математика покера от профессионала» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент 5 редакция, Жанр: Развлечения, foreign_home, Детская образовательная литература, Хобби и ремесла, Спорт, foreign_edu, foreign_desc, Руководства, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика покера от профессионала: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика покера от профессионала»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что самое важное в покере? Блеф? Знание комбинаций? Ставки?
Математика!
Многие игроки упускают ее, недооценивая ее значимость, или используют лишь поверхностно, просчитывая шансы на победу «на глазок».
Известный игрок в покер, обладатель трех золотых браслетов WSOP Дэвид Склански раскрывает перед своими читателями всю мощь математического подхода в покере. Теперь цифры всегда подскажут вам, какую выбрать тактику с конкретным соперником и какое принять решение в каждой ситуации. Математические схемы способны привести ваш стиль игры к победному алгоритму – системе, которая поможет вам гарантированно быть в плюсе при регулярной и продолжительной игре.

Математика покера от профессионала — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика покера от профессионала», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Конечно, при возможности видеть все карты покера просто бы не существовало. Искусство данной игры заключается, с одной стороны, в заполнении пробелов в информации, получаемой от ваших оппонентов при наличии ставок, и, с другой стороны, в сокрытии от других игроков любой информации о своей руке сверх той, что вы сами хотите им сообщить.

Вышесказанное приводит нас к Фундаментальной теореме покера:

Каждый раз, когда вы разыгрываете руку иначе, нежели вы сыграли бы ее, видя все карты ваших оппонентов, они выигрывают; и каждый раз, когда вы разыгрываете вашу руку тем же образом, каким вы бы сыграли ее, если бы могли видеть все карты соперников, они проигрывают. Справедливо и обратное: каждый раз, когда ваши оппоненты разыгрывают свою руку не так, как в случае, когда у них есть возможность видеть все ваши карты, вы выигрываете; и каждый раз, когда они разыгрывают свою руку тем же образом, каким они сыграли бы, видя все ваши карты, вы проигрываете.

Фундаментальная теорема применяется полностью, когда розыгрыш свелся к вашему противостоянию с единственным оппонентом. И она почти всегда применима к раздачам с несколькими активными участниками, однако существуют редкие исключения, которые мы затронем в конце главы.

Что означает Фундаментальная теорема покера? Поймите, что если каким-то образом соперник узнал бы ваши карты, он смог бы принять верное решение о своих действиях. Например, если в дро игре ваш оппонент увидел, что у вас флеш, правильным для него было бы сбросить свою пару тузов на вашу ставку. Колл являлся бы ошибкой, но это особый тип ошибки. Мы не имеем в виду, что ваш противник плохо сыграл раздачу, уравняв с парой тузов; мы говорим о том, что он сыграл бы иначе, если бы знал ваши карты.

Этот пример с флешем вполне понятен. На самом деле вся теорема довольно проста, в том-то и прелесть; однако с ее использованием не всегда все так предельно ясно. Иногда размер суммы денег в банке делает колл верной игрой, даже если вы видите, что рука соперника сильнее вашей. Давайте взглянем на несколько примеров Фундаментальной теоремы покера в действии.

Примеры Фундаментальной теоремы покера

Пример 1

Допустим, ваша рука, когда вы делаете ставку, не настолько хороша, как рука вашего соперника: он уравнивает вашу ставку, и вы проигрываете. Но в действительности вы не проиграли, а заработали! Почему? Поскольку если бы ваш оппонент знал, какие у вас были карты, он бы повысил. Таким образом, когда противник не сделал рейз, вы оказались в плюсе, и, если он сбрасывает, вы получаете внушительную сумму.

Данный пример может показаться слишком простым для серьезного обсуждения, но на самом деле это общий прицип для некоторых весьма искусных розыгрышей. Допустим, в безлимитном холдеме у вас на руках

а у вашего оппонента разномастные Приходит флоп Вы делаете чек ваш - фото 1

а у вашего оппонента разномастные

Приходит флоп Вы делаете чек ваш противник ставит и вы коллируете Теперь - фото 2

Приходит флоп

Вы делаете чек ваш противник ставит и вы коллируете Теперь туз бубен - фото 3

Вы делаете чек, ваш противник ставит, и вы коллируете. Теперь туз бубен приходит на терне, и вы ставите, пытаясь изобразить, что вы имеете туза. Если бы ваш оппонент знал, что у вас на руках, для него верной игрой было бы повысить вас настолько, чтобы вам оказалось невыгодно тянуть флеш или стрит последней картой. Таким образом, если ваш соперник ограничивается коллом, вы зарабатываете. Вы получили выгоду не только от того, что вы за относительно маленькую сумму увидели последнюю карту, но и потому, что ваш оппонент не принял правильного решения. Совершенно ясно, что если ваш оппонент сбрасывает, то вы выигрываете очень существенно, поскольку у него была лучшая рука.

Пример 2

Допустим, в банке $80 и у вас две пары. Вы играете в дро покер и ставите $10, что, как мы предполагаем, является максимальной ставкой. Ваш единственный оппонент имеет флеш-дро (для флеша ему недостает одной карты). Вопрос заключается в следующем: вам выгоднее, чтобы он уравнял или сбросил? Естественно, что вы хотите увидеть от него наиболее подходящее для вас решение. Фундаментальная теорема покера утверждает, что вам наиболее выгодна неправильная игра оппонента при полной информации об обеих руках. Поскольку ваш противник получает шансы 9 к 1 (его колл в $10 может выиграть ему $90) и является только 5 к 1 андердогом собрать флеш, для него будет верным сделать колл, потому что колл имеет положительное ожидание. Но так как колл является для вашего оппонента верной игрой, то, следуя Фундаментальной теореме покера, вы хотите увидеть от него пас.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика покера от профессионала»

Представляем Вашему вниманию похожие книги на «Математика покера от профессионала» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Алексей Номейн - Стратегия покера
Алексей Номейн
Томми Анджело - Составляющие покера
Томми Анджело
Отзывы о книге «Математика покера от профессионала»

Обсуждение, отзывы о книге «Математика покера от профессионала» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x