Дэвид Склански - Математика покера от профессионала

Здесь есть возможность читать онлайн «Дэвид Склански - Математика покера от профессионала» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент 5 редакция, Жанр: Развлечения, foreign_home, Детская образовательная литература, Хобби и ремесла, Спорт, foreign_edu, foreign_desc, Руководства, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика покера от профессионала: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика покера от профессионала»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что самое важное в покере? Блеф? Знание комбинаций? Ставки?
Математика!
Многие игроки упускают ее, недооценивая ее значимость, или используют лишь поверхностно, просчитывая шансы на победу «на глазок».
Известный игрок в покер, обладатель трех золотых браслетов WSOP Дэвид Склански раскрывает перед своими читателями всю мощь математического подхода в покере. Теперь цифры всегда подскажут вам, какую выбрать тактику с конкретным соперником и какое принять решение в каждой ситуации. Математические схемы способны привести ваш стиль игры к победному алгоритму – системе, которая поможет вам гарантированно быть в плюсе при регулярной и продолжительной игре.

Математика покера от профессионала — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика покера от профессионала», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот аналогичная, но немного более сложная ситуация. На последней улице в 7-карточный стад вы собрали флеш. Оппонент перед вами, которого вы кладете на две пары, ставит, и, кроме того, в раздаче присутствует игрок за вами, – вы уверены, что тоже бьете его. Если вы повысите, противник, сидящий после вас, сбросит. Более того, игрок, первоначально сделавший ставку, вероятно, также сбросит, если он действительно имеет две пары; но если он собрал фулл хаус, то он сделает ререйз. В данной ситуации у игры через рейз не положительное математическое ожидание, а отрицательное. В случае, когда первый игрок собрал фулл хаус и сделает ререйз, такая игра будет стоить вам две ставки, если вы сделаете колл его ререйза, и одну ставку, если сбросите.

Пойдем в этом примере еще дальше. Если вы последней картой не соберете флеш и игрок перед вами сделает ставку, вы можете сделать рейз против определенных оппонентов! Следуя логике ситуации, когда вы не собрали флеш, соперник позади вас сбросит, и если игрок, первоначально сделавший ставку, имел только две пары, он тоже может сбросить. Имеет ли розыгрыш положительное ожидание (или менее негативное ожидание, нежели пас), зависит от шансов, предоставляемых вам за ваши деньги: то есть размер банка и ваши предполагаемые шансы на то, что оппонент, сделавший первоначальную ставку, не имеет фулл хауса и сбросит, имея две пары. Последнее предположение требует, конечно, умения читать руки и оппонентов, о чем я поговорю в более поздних главах. На таком уровне игры расчет математического ожидания становится намного запутаннее, нежели когда вы просто подбрасываете монетку.

Математическое ожидание также способно показать, что один розыгрыш является менее убыточным, нежели другой. Например, когда вы думаете, что теряете 75 центов, включая анте, разыгрывая руку, вы тем не менее должны ее разыгрывать, поскольку это лучше, чем сброс при анте в $1.

Другой важной причиной понимать математическое ожидание является то, что такое понимание позволяет вам хладнокровно относиться к возможному выигрышу или проигрышу ставки: когда вы делаете хорошую ставку или хороший пас, вы будете знать, что заработали или сэкономили конкретную сумму, которую более слабый игрок заработать или сэкономить не смог бы. Намного более сложно сделать волевой пас, если вас перетянули. Однако деньги, которые вы сэкономили, сделав пас вместо колла, прибавляются к вашим выигрышам на конец вечера или месяца. Честное слово: сделав хороший пас, я получаю удовольствие, несмотря на то что проиграл раздачу.

Просто помните, что, поменяй вас местами, ваш оппонент не сделал бы такого паса, и, как мы увидим при обсуждении Фундаментальной теоремы покера в следующей главе, это то, из чего складывается ваше преимущество. Вы должны радоваться подобным моментам. Вам следует даже извлекать удовольствие из проигрышных сессий, когда вы знаете, что другие игроки на вашем месте потеряли бы с вашими картами еще больше денег.

Выигрыш в час

Как говорилось в примере с подбрасыванием монетки в начале этой главы, выигрыш в час тесно связан с математическим ожиданием, и эта концепция особенно важна для профессионального игрока. Когда вы играете в покер, вы должны попытаться оценить ваше почасовое ожидание. По большей части вам придется основывать вашу оценку на суждении и опыте, но не помешает использовать и некоторые математические указания. Например, если вы играете в дро-лоуболл и видите трех игроков, делающих колл на $10 и затем тянущих две карты, что является очень плохой игрой, вы можете сказать себе, что каждый раз, когда они вкладывают $10, они проигрывают в среднем около $2. Упомянутые игроки делают это восемь раз за час, то есть проигрывают примерно $48 в час. Вы – один из четырех других игроков, примерно одинакового уровня мастерства, и, следовательно, вы четверо делите $48 в час, что дает $12 в час на каждого. Ваш выигрыш за час в такой ситуации – это ваша доля от почасовой потери трех плохих игроков в данной партии.

Конечно, в большинстве игр ваша оценка не может быть настолько точной. Даже в предложенном только что примере другие переменные способны повлиять на ваше почасовое ожидание. Кроме того, когда вы играете в открытом карточном клубе или в некой приватной игре, где организатор берет плату , вам необходимо вычесть либо рейк казино, либо почасовую оплату за место . В покерных залах Лас-Вегаса рейк составляет обычно 10 % с каждого банка, максимум $4, в небольших 7-карточных стад играх и 5 % с каждого банка, максимум $3, в крупных 7-карточных стад играх, техасском холдеме и большинстве других разновидностей покера.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика покера от профессионала»

Представляем Вашему вниманию похожие книги на «Математика покера от профессионала» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Алексей Номейн - Стратегия покера
Алексей Номейн
Томми Анджело - Составляющие покера
Томми Анджело
Отзывы о книге «Математика покера от профессионала»

Обсуждение, отзывы о книге «Математика покера от профессионала» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x