Обучающие моменты
Числовой ряд
Вот два примера для вас: к чему ближе сумма чисел 56 и 75, к 125 или к 150? К чему ближе их сумма, к 130 или к 136? Профессор Станислас Дехен из Национального института здоровья Франции полагает, что первый из этих примеров вам будет проще решить, потому что вы, как и ваши дети, легче проводите приблизительную оценку чисел, отстоящих дальше друг от друга, чем тех, которые требуют более точной математической оценки.
А этот пример для вашего 3–6-летнего ребенка: возьмите 3 набора предметов (один из 3 предметов, второй из 5, а третий из 7) и попросите ребенка сказать вам, какой набор самый большой, а какой самый маленький. Может ли ваш ребенок это сделать?
Поскольку речь идет о сравнении двух наборов, которые значительно различаются по количеству (3 и 7), задача будет не слишком сложной. А теперь спросите ребенка о среднем наборе. Теперь задача станет потруднее, поскольку средний набор ненамного отличается от двух других. Спросите: «Этот набор больше того (укажите на самый маленький)? А вот этого набора он больше или меньше (укажите теперь на самый большой)?» И посмотрите, как ваш ребенок ответит на эти вопросы.
Высшее достижение: счет и сравнение
Чтобы по-настоящему освоить сложение и вычитание, ваш ребенок должен уметь использовать принципы подведения итогов совместно со знаниями о числовом луче. Это означает, что он должен понимать не только то, что в сосчитанном им наборе содержится три шарика, но и что три шарика больше, чем два, но меньше, чем четыре. Этот последний шаг в дошкольной математике большинство детей совершают в возрасте между 5 и 6 годами. Открытие числового луча позволяет детям складывать наборы чисел и понимать, что когда они берут набор из 3 предметов и добавляют к нему набор из 4 предметов, то достигают по числовому лучу значения 7 единиц. Тогда и только тогда ребенок по-настоящему усваивает разницу величин между 3 и 7. Тогда и только тогда ребенок безоговорочно узнает, что сложение и вычитание – это операции, которые происходят в одном и том же континууме, в пределах числового луча. Дети не могут дать сознательное объяснение числовому лучу; это – знание бессознательное, но от этого оно не перестает быть знанием. Развитие понимания числового луча и всего, что он в себя включает, – это наивысшее достижение дошкольника в математике. И наилучший, сопряженный с наименьшим количеством проблем способ, каким ваш ребенок может достичь этой вершины, – это игра и проработка простеньких устных примеров на сложение и вычитание, которые вы решаете в ходе вашей повседневной жизни.
Обучающие моменты
Домашняя игра с числовым лучом
У многих настольных игр центральным элементом является числовой луч. Цель этих игр – добраться от начальной позиции к финишу и прийти к нему первым. Пространства-клеточки на игровой доске представляют собой род числового луча, и мы движемся через них, бросая кости. Когда выпадает 6 очков, мы делаем 6 шагов – и сразу оказываемся впереди игрока, который передвинулся только на 3 шага. В таких играх дети учатся не только принципу однозначного соответствия (один шаг соответствует одному очку на стороне игральной кости), но и усваивают принцип числового луча. Они движутся вперед к цели (которую мы можем установить как конкретное число клеточек, скажем 50).
Если хотите как следует пофантазировать, можете даже придумать собственную игру. Нарезав полоски бумаги и сделав на них отметины, представляющие числа от 0 до 50, дети могут следить, как их фишки движутся по числовому лучу к цифровой цели. Искушенный родитель может даже писать указания в клетках, например «вернись назад на 2 клетки», чтобы ребенок мог усваивать отношения между сложением и вычитанием на этой улице с двусторонним движением.
В процессе игры можно задавать ребенку вопросы: кто дальше ушел вперед? Почему? И насколько? Вы уже понимаете, что, играя в эту игру, на развитие навыков счета начинаешь смотреть совершенно по-новому.
Что означают эти исследования для вашего ребенка
Исследования показывают, что даже новорожденные как минимум способны усваивать некоторую информацию о количестве, например: «больше или меньше»; а во второй половине первого года жизни младенцы получают некоторое представление о равенстве. Некоторые исследователи полагают, что в этот ранний период жизни малыши опираются на количество, а не на знание о числе. Но другие считают, что младенцы обладают своего рода рудиментарными знаниями о числах – пока очень маленьких, – которые позднее приведут к развитию способности разбираться в числах вообще.
Читать дальше
Конец ознакомительного отрывка
Купить книгу