Анатолий Фоменко - Истину можно вычислить.

Здесь есть возможность читать онлайн «Анатолий Фоменко - Истину можно вычислить.» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: ООО «Издательство Астрель», Жанр: Публицистика, История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Истину можно вычислить.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Истину можно вычислить.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Первоначально, в XVI–XVII веках, историческая хронология была разделом прикладной математики. Однако математика и астрономия того времени были еще недостаточно разработаны и поэтому при определении дат событий древности были допущены серьезные ошибки. Сегодня историческая хронология возвращается в лоно современной математики. Это позволяет исправить грубые ошибки хронологов XVI–XVII веков и построить правильное здание истории. В настоящей книге излагаются новые эмпирико-статистические методы датирования древних событий, предложенные и разработанные А.Т. Фоменко.
Книга не предполагает от читателя специальных знаний и предназначена для всех, кто интересуется проблемами всемирной истории.

Истину можно вычислить. — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Истину можно вычислить.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наконец, вспомним, что при подсчете коэффициента р''(X, Y) летописи X и Y оказались в неравноправном положении. Дело в том, что выше мы рассматривали «n-мерный шар» радиуса r(X, Y) с центром в точке а(X). Чтобы устранить возникшее неравноправие между летописями X и Y, просто поменяем их местами и повторим описанную выше конструкцию, взяв теперь за центр «n-мерного шара» точку a(Y). В результате получится некоторое число, которое мы обозначим через p''(Y, X). В качестве «симметричного коэффициента» p(X, Y) мы возьмем среднее арифметическое чисел р''(X, Y) и p''(Y,X), то есть

½ (р''(X, Y) + p''(Y, X)).

Для наглядности поясним смысл предварительного коэффициента р'(X, Y) на примере графиков объема всего лишь с двумя локальными максимумами. В этом случае оба вектора

а(X) = (х 1, x 2, х 3) и a(Y) = (у 1, у 2, у 3)

являются векторами в трехмерном евклидовом пространстве. Концы этих векторов лежат на двумерном равностороннем треугольнике L, отсекающем от координатных осей в пространстве R 3одно и то же число В — А. Рис. 8. Если расстояние от точки а(X) до точки а(Y) обозначить через |а(X) — а(Y)|, то множество К — это пересечение треугольника L с трехмерным шаром, центр которого находится в точке а(X), а радиус равен |а(X) — а(Y)|. После этого нужно подсчитать количество «целых точек», то есть точек с целочисленными координатами, в множестве К и в треугольнике L. Взяв отношение получившихся чисел, мы и получим коэффициент р'(X, Y).

Рис 8 Векторы аX и аY определяют шар часть которого попадает в - фото 8

Рис. 8. Векторы а(X) и а(Y) определяют «шар», часть которого попадает в симплекс L.

При конкретных вычислениях удобно пользоваться приближенным способом вычисления коэффициента p(X, Y). Дело в том, что подсчет числа целых точек в множестве К довольно затруднителен. Но оказывается, эту трудность можно обойти, перейдя от «дискретной модели» к «непрерывной модели». Хорошо известно, что если (n-1)-мерное множество К в (n-1)-мерном симплексе L достаточно велико, то число целых точек в К примерно равно (n-1)-мерному объему множества К. Поэтому с самого начала в качестве предварительного коэффициента р'(X, Y) можно брать просто отношение (n-1)-мерного объема K к (n-1)-мерному объему L, то есть

Например в случае двух локальных максимумов в качестве коэффициента рX Y - фото 9

Например, в случае двух локальных максимумов в качестве коэффициента р'(X, Y) следует взять отношение

Конечно при малых значениях В А дискретный коэффициент и непрерывный - фото 10

Конечно, при малых значениях В — А «дискретный коэффициент» и «непрерывный коэффициент» различны. Но в наших исследованиях мы будем иметь дело с временны́ми интервалами В — А в несколько десятков и даже сотен лет, так что для интересующих нас целей можно, не делая большой ошибки, уверенно пользоваться «непрерывной моделью» р'(X, Y). Точные математические формулы для подсчета «непрерывного коэффициента» р'(X, Y), для его оценки сверху и снизу, приведены в работе [884], с. 107.

Укажем еще одно уточнение описанной статистической модели. При работе с конкретными графиками объема исторических текстов следует «сглаживать» эти графики, чтобы устранить мелкие случайные всплески. Мы проводили такое сглаживание графика, «усредняя по соседям», то есть, заменяя значение функции объема в каждой точке t на среднее арифметическое трех значений функции, а именно в точках t — 1, t, t + 1.В качестве «окончательного коэффициента» p(X, Y) следует взять его значение, подсчитанное для таких «сглаженных графиков».

Сформулированный выше принцип корреляции максимумов подтвердится, если для большинства пар заведомо зависимых текстов X и Y коэффициент p(X, Y) окажется «малым», а для большинства пар заведомо независимых текстов, напротив, — «большим».

1.4. Экспериментальная проверка принципа корреляции максимумов

Примеры зависимых и независимых исторических текстов

В 1978–1985 годах автором был проведен первый обширный вычислительный эксперимент по подсчету чисел p(X, Y) для нескольких десятков пар конкретных исторических текстов-хроник, летописей и т. п. Детали см. в [904], [908], [1137], [884].

Оказалось, что коэффициент p(X, Y) достаточно хорошо различает ЗАВЕДОМО ЗАВИСИМЫЕ и ЗАВЕДОМО НЕЗАВИСИМЫЕ пары исторических текстов. Было обнаружено, что для всех исследованных нами пар реальных летописей X, Y, описывающих ЗАВЕДОМО РАЗНЫЕ события (разные исторические эпохи или разные государства), то есть для НЕЗАВИСИМЫХ текстов, число p(X, Y) колеблется от 1 до 1/100 при количестве локальных максимумов от 10 до 15. Напротив, если исторические летописи X и Y ЗАВЕДОМО ЗАВИСИМЫ, то есть описывают одни и те же события, то число p(X, Y) не превосходит 10 -8для того же количества максимумов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Истину можно вычислить.»

Представляем Вашему вниманию похожие книги на «Истину можно вычислить.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Анатолий Фоменко - Дон Кихот или Иван Грозный
Анатолий Фоменко
Анатолий Фоменко - Крещение Руси
Анатолий Фоменко
Отзывы о книге «Истину можно вычислить.»

Обсуждение, отзывы о книге «Истину можно вычислить.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x