Анатолий Фоменко - Истину можно вычислить.

Здесь есть возможность читать онлайн «Анатолий Фоменко - Истину можно вычислить.» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2007, ISBN: 2007, Издательство: ООО «Издательство Астрель», Жанр: Публицистика, История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Истину можно вычислить.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Истину можно вычислить.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Первоначально, в XVI–XVII веках, историческая хронология была разделом прикладной математики. Однако математика и астрономия того времени были еще недостаточно разработаны и поэтому при определении дат событий древности были допущены серьезные ошибки. Сегодня историческая хронология возвращается в лоно современной математики. Это позволяет исправить грубые ошибки хронологов XVI–XVII веков и построить правильное здание истории. В настоящей книге излагаются новые эмпирико-статистические методы датирования древних событий, предложенные и разработанные А.Т. Фоменко.
Книга не предполагает от читателя специальных знаний и предназначена для всех, кто интересуется проблемами всемирной истории.

Истину можно вычислить. — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Истину можно вычислить.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, сравнивая летописи X и Y, можно считать, что оба вектора а(X) = (х 1, …, x n) и а(Y) = (y 1, …, y n) имеют одно и то же число координат и поэтому лежат в одном и том же евклидовом пространстве R n. Отметим, что у каждого из этих векторов сумма его координат одна и та же и равна В — А = D — С, то есть длине интервала времени (А, В). Итак:

x 1+ … + x n= y 1+ … + y n= В — А.

Рассмотрим теперь множество всех целочисленных векторов с = (с 1, …, c n), у которых все координаты неотрицательны и их сумма c 1+ … + c nравна одному и тому же числу, а именно В — А, то есть длине временнóго интервала (А, В). Обозначим множество всех таких векторов через S. Геометрически эти векторы можно изобразить так. Будем считать, что все они выходят из начала координат, то есть из точки О в R n. Рассмотрим концы всех таких векторов с = (с 1, …, c n). Все они лежат на многомерном симплексе L, определяемом в пространстве R nуравнением

c 1+ … + c n= В — А,

где все координаты c 1, …, c nявляются вещественными неотрицательными числами. Множество S геометрически изображается как множество всех точек из L, имеющих целочисленные координаты.

Ясно, что концы векторов локальных максимумов а(X) и а(Y) для летописей X и Y принадлежат множеству S, рис. 7.

Рис 7 Векторы локальных максимумов аX и аY двух сравниваемых летописей X - фото 7

Рис. 7. Векторы локальных максимумов а(X) и а(Y) двух сравниваемых летописей X и Y можно условно изобразить двумя векторами в евклидовом пространстве.

Фиксируем теперь вектор а(X) = (х 1, …, x n) и рассмотрим все векторы с = (с 1, …, c n) с вещественными координатами, принадлежащие симплексу L, и такие, что они удовлетворяют еще одному дополнительному соотношению:

(c 1— x 1) 2+ … + (c n— x n) 2< (y 1— x 1) 2+ … + (y n— x n) 2.

Множество всех таких векторов с = (c 1, …, с n) мы обозначим через К.

Математически эти векторы описываются как удаленные от фиксированного вектора а(X) на расстояние, не превышающее расстояния r(X, Y) от вектора а(X) до вектора а(Y). Говоря здесь о расстоянии между векторами, мы имеем в виду расстояние между их концами. Напомним, что величина

(y 1— x 1) 2+ … + (y n— x n) 2

равна квадрату расстояния r(X, Y) между векторами а(X) и а(Y). Поэтому множество К — это часть симплекса L, попавшая в n-мерный шар радиуса r(X, Y) с центром в точке а(X).

Подсчитаем теперь, сколько целочисленных векторов содержится в множестве К и сколько — в множестве L. Полученные числа обозначим через m(К) и m(L) соответственно. В качестве «предварительного коэффициента» р'(X, Y) мы возьмем отношение этих двух чисел, то есть

р'(X, Y) = m(К)/m(L).

Так как множество К составляет лишь часть множества L, то число р'(X, Y) заключено на отрезке [0,1].

Если векторы а(X) и а(Y) совпадают, то р'(X, Y) = 0. Если векторы, напротив, далеки друг от друга, то число р'(X, Y) близко к единице и даже может оказаться равным единице.

Отметим здесь полезную, хотя и необязательную для дальнейшего, интерпретацию числа р'(X, Y). Предположим, что вектор с = (с 1, …, c n) случайным образом пробегает все векторы из множества S, причем он с одинаковой вероятностью может оказаться в любой точке этого множества. В таком случае говорят, что случайный вектор с = (c 1, …, c n) распределен РАВНОМЕРНО на множестве S, то есть на множестве «целых точек» (n-1)-мерного симплекса L. Тогда определенное нами число р'(X, Y) допускает вероятностную интерпретацию. Оно просто равно вероятности случайного события, заключающегося в том, что случайный вектор с = (с 1, …, c n) оказался на расстоянии от фиксированного вектора а(X), не превышающем расстояния между векторами а(X) и а(Y). Чем меньше эта вероятность, тем менее случайна наблюдаемая нами близость векторов а(X) и а(Y). Другими словами, в этом случае их близость указывает на наличие какой-то ЗАВИСИМОСТИ между ними. И эта зависимость тем больше, чем меньше число р'(X, Y).

Равномерность распределения случайного вектора с = (c 1, …, c n) на симплексе L, точнее, на множестве S его «целых точек», может быть обоснована тем, что этот вектор изображает расстояния между соседними локальными максимумами функции объема «глав» исторических летописей или каких-то аналогичных текстов, описывающих заданный период времени (А, В). При рассмотрении всевозможных летописей, говорящих об истории всевозможных государств во всевозможные исторические эпохи, естественно предполагать, что локальный максимум может «с равной вероятностью» появиться в произвольной точке временнóго интервала (А, В).

Описанное построение было выполнено в предположении, что мы фиксировали некоторый вариант введения кратных максимумов у графиков объема летописей. Таких вариантов, конечно, много. Рассмотрим все такие варианты и для каждого из них подсчитаем свое число р'(X, Y), после чего возьмем наименьшее из всех получившихся чисел. Обозначим его через р''(X, Y). То есть мы минимизируем коэффициент р'(X, Y) по всем возможным способам введения локальных максимумов у графиков vol X(t) и vol Y(t).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Истину можно вычислить.»

Представляем Вашему вниманию похожие книги на «Истину можно вычислить.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Анатолий Фоменко - Дон Кихот или Иван Грозный
Анатолий Фоменко
Анатолий Фоменко - Крещение Руси
Анатолий Фоменко
Отзывы о книге «Истину можно вычислить.»

Обсуждение, отзывы о книге «Истину можно вычислить.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x