Так называемый геологический тип наблюдений позволяет изучать далекое прошлое объекта, находящегося радом с нами. Астрофизические же наблюдения предоставляют нам информацию о далеком прошлом только очень удаленных объектов.
Основа космологических наблюдений заключается в принципе, что информация, которая может быть получена в результате наблюдения вдоль определенного пространственно-временного конуса [42], достаточна для обобщенных выводов и построения космологических моделей, в том числе и определения пространственно-временной геометрии Вселенной.
Действительно, на основе такой информации это теоретически возможно, если предположить, что такая информация могла бы быть получена без помех. Однако на практике избежание помех является трудной, можно сказать, невыполнимой задачей, поскольку расстояние до изучаемых объектов непросто определить с достаточной степенью точности, а также сложно установить природу этих объектов с достаточной степенью достоверности, и наконец, ввиду больших трудностей в получении подобной информации, из-за очевидного искажения изображений всех дальних объектов, а также неизвестности их относительных скоростей. Чем дальше в прошлое Вселенной направлены наши наблюдения, тем выше степень их неопределенности.
Какими же должны быть астрономические наблюдения? Когда они ведутся вне рамок какой-либо определенной космологической теории, как, например, картирование галактик, это может дать неожиданные результаты: обнаружение гигантских структур на супергалактическом уровне, группы галактик, образующие стены, а также «колодцы», практически полностью лишенные галактик. Однако подобный подход нечасто применяется в современной астрофизике и космологии – не только из-за вышеуказанных сложностей в ведении наблюдений, но и из-за низкой способности результатов давать значимые объяснения на космологическом уровне. Например, результаты картирования галактик говорят нам лишь о геометрии и распределении вещества в обозреваемом участке Вселенной, не разъясняя причины и природу наблюдаемого.
Интерпретация космологических наблюдений зависит от их астрофизического понимания. Космологический же анализ зависит от того, в каком направлении велся поиск, оставляя большое пространство для маневра и помогая выживать теориям, даже когда наблюдаемые данные не совсем совпадают с предсказанными. Более того, после каждой серии новых наблюдений в космологии допустимо немного подправлять теорию, что иной раз делает ее менее уязвимой для проверки новыми результатами, полученными в следующей серии наблюдений. То есть в космологии принято подглядывать в конец учебника, подсматривая правильные ответы. Конечно, когда наблюдения приходят в полное противоречие с теорией, тогда она отправляется на покой, хотя иногда ненадолго, ибо частенько старые теории реанимируются и вновь пускаются в оборот.
По крайней мере, стандартной космологической теории необходимо оставаться в пределах разумных тестов, а именно: например, Вселенная не должна быть моложе, чем самые старые звезды, находящиеся в ней. Такие казусы случались с космологической теорией в недалеком прошлом. Однако здесь на подмогу приходит аргумент: насколько мы можем полагаться на точность определения возраста звезд?
Несмотря на то что в понимании эволюции звезд астрофизики достигли наиболее впечатляющих успехов и теория синтеза элементов в результате термоядерного синтеза представляется весьма обоснованной, ошибка в определении возраста тех или иных звезд все же может быть значительной. Необходимость оставаться в пределах соответствия с основными наблюдениями является основным условием для того, чтобы космология считалась, хотя бы отчасти, наукой эмпирической.
Горизонт возможных астрономических наблюдений постулируется на основе утверждения стандартной космологической теории, что в силу расширения, а теперь и ускоряющегося расширения Вселенной, существуют объекты достаточно удаленные и продолжающие удаляться от нас со сверхсветовой скоростью (что, кстати, не противоречит запрету Эйнштейна на существование сверхсветовой скорости, ибо речь идет не о движении материальных объектов, а имеется в виду расширение самого пространства). Свет от этих объектов никогда не сможет достигнуть наблюдателя на Земле. Таким образом, мы не сможем увидеть настолько удаленное прошлое, которое могло бы разъяснить нам природу начальной эволюции Вселенной, и если мы не проживаем в «маленькой вселенной», то можно предположить, что наибольшая часть вещества в ней находится за горизонтом возможных наблюдений. А следовательно, геометрия Вселенной на больших шкалах не может быть протестирована.
Читать дальше