Paul Graham - Hackers and Painters - Big Ideas from the Computer Age

Здесь есть возможность читать онлайн «Paul Graham - Hackers and Painters - Big Ideas from the Computer Age» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2004, ISBN: 2004, Издательство: O'Reilly Media, Жанр: Публицистика, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Hackers and Painters: Big Ideas from the Computer Age: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Hackers and Painters: Big Ideas from the Computer Age»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

"The computer world is like an intellectual Wild West, in which you can shoot anyone you wish with your ideas, if you're willing to risk the consequences. " —from
, by Paul Graham We are living in the computer age, in a world increasingly designed and engineered by computer programmers and software designers, by people who call themselves hackers. Who are these people, what motivates them, and why should you care? Consider these facts: Everything around us is turning into computers. Your typewriter is gone, replaced by a computer. Your phone has turned into a computer. So has your camera. Soon your TV will. Your car was not only designed on computers, but has more processing power in it than a room-sized mainframe did in 1970. Letters, encyclopedias, newspapers, and even your local store are being replaced by the Internet.
, by Paul Graham, explains this world and the motivations of the people who occupy it. In clear, thoughtful prose that draws on illuminating historical examples, Graham takes readers on an unflinching exploration into what he calls "an intellectual Wild West." The ideas discussed in this book will have a powerful and lasting impact on how we think, how we work, how we develop technology, and how we live. Topics include the importance of beauty in software design, how to make wealth, heresy and free speech, the programming language renaissance, the open-source movement, digital design, Internet startups, and more. And here's a taste of what you'll find in
: "In most fields the great work is done early on. The paintings made between 1430 and 1500 are still unsurpassed. Shakespeare appeared just as professional theater was being born, and pushed the medium so far that every playwright since has had to live in his shadow. Albrecht Durer did the same thing with engraving, and Jane Austen with the novel. Over and over we see the same pattern. A new medium appears, and people are so excited about it that they explore most of its possibilities in the first couple generations. Hacking seems to be in this phase now. Painting was not, in Leonardo's time, as cool as his work helped make it. How cool hacking turns out to be will depend on what we can do with this new medium." Andy Hertzfeld, co-creator of the Macintosh computer, says about
: "Paul Graham is a hacker, painter and a terrific writer. His lucid, humorous prose is brimming with contrarian insight and practical wisdom on writing great code at the intersection of art, science and commerce." Paul Graham, designer of the new Arc language, was the creator of Yahoo Store, the first web-based application. In addition to his PhD in Computer Science from Harvard, Graham also studied painting at the Rhode Island School of Design and the Accademia di Belle Arti in Florence.

Hackers and Painters: Big Ideas from the Computer Age — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Hackers and Painters: Big Ideas from the Computer Age», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The real question is, how far up the ladder of abstraction will parallelism go? In a hundred years will it affect even application programmers? Or will it be something that compiler writers think about, but which is usually invisible in the source code of applications?

One thing that does seem likely is that most opportunities for Parallelism will be wasted. This is a special case of my more general prediction that most of the extra computer power we're given will go to waste. I expect that, as with the stupendous speed of the underlying hardware, parallelism will be something that is available if you ask for it explicitly, but ordinarily not used. This implies that the kind of parallelism we have in a hundred years will not, except in special applications, be massive parallelism. I expect for ordinary programmers it will be more like being able to fork off processes that all end up running in parallel.

And this will, like asking for specific implementations of data structures, be something that you do fairly late in the life of a program, when you try to optimize it. Version 1s will ordinarily ignore any advantages to be got from parallel computation, just as they will ignore advantages to be got from specific representations of data.

Except in special kinds of applications, parallelism won't pervade the programs that are written in a hundred years. It would be premature optimization if it did.

How many programming languages will there be in a hundred years? There seem to be a huge number of new programming languages lately. Part of the reason is that faster hardware has allowed programmers to make different tradeoffs between speed and convenience, depending on the application. If this is a real trend, the hardware we'll have in a hundred years should only increase it.

And yet there may be only a few widely used languages in a hundred years. Part of the reason I say this is optimism: it seems that, if you did a really good job, you could make a language that was ideal for writing a slow version 1, and yet with the right optimization advice to the compiler would also yield fast code when necessary. So, since I'm optimistic, I'm going to predict that despite the huge gap they'll have between acceptable and maximal efficiency, programmers in a hundred years will have languages that can span most of it.

As this gap widens, profilers will become increasingly important. Little attention is paid to profiling now. Many people still seem to believe that the way to get fast applications is to write compilers that generate fast code. As the gap between acceptable and maximal performance widens, it will become increasingly clear that the way to get fast applications is to have a good guide from one to the other.

When I say there may only be a few languages, I'm not including domainspecific "little languages." I think such embedded languages are a great idea, and I expect them to proliferate. But I expect them to be written as thin enough skins that users can see the general-purpose language underneath.

Who will design the languages of the future? One of the most exciting trends in the last ten years has been the rise of open source languages like Perl, Python, and Ruby. Language design is being taken over by hackers. The results so far are messy, but encouraging. There are some stunningly novel ideas in Perl, for example. Many are stunningly bad, but that's always true of ambitious efforts. At its current rate of mutation, God knows what Perl might evolve into in a hundred years.

It's not true that those who can't do, teach (some of the best hackers I know are professors), but it is true that there are a lot of things that those who teach can't do. Research imposes constraining caste restrictions. In any academic field, there are topics that are ok to work on and others that aren't. Unfortunately the distinction between acceptable and forbidden topics is usually based on how intellectual the work sounds when described in research papers, rather than how important it is for getting good results. The extreme case is probably literature; people studying literature rarely say anything that would be of the slightest use to those producing it.

Though the situation is better in the sciences, the overlap between the kind of work you're allowed to do and the kind of work that yields good languages is distressingly small. (Olin Shivers has grumbled eloquently about this.) For example, types seem to be an inexhaustible source of research papers, despite the fact that static typing seems to preclude true macros—without which, in my opinion, no language is worth using.

The trend is not merely toward languages being developed as open source projects rather than "research," but toward languages being designed by the application programmers who need to use them, rather than by compiler writers. This seems a good trend and I expect it to continue.

Unlike physics in a hundred years, which is almost necessarily impossible to predict, it may be possible in principle to design a language now that would appeal to users in a hundred years.

One way to design a language is to just write down the program you'd like to be able to write, regardless of whether there is a compiler that can translate it or hardware that can run it. When you do this you can assume unlimited resources. It seems like we ought to be able to imagine unlimited resources as well today as in a hundred years.

What program would one like to write? Whatever is least work. Except not quite: whatever would be least work if your ideas about programming weren't already influenced by the languages you're currently used to. Such influence can be so pervasive that it takes a great effort to overcome it. You'd think it would be obvious to creatures as lazy as us how to express a program with the least effort. In fact, our ideas about what's possible tend to be so limited by whatever language we think in that easier formulations of programs seem very surprising. They're something you have to discover, not something you naturally sink into.

One helpful trick here is to use the length of the program as an approximation for how much work it is to write. Not the length in characters, of course, but the length in distinct syntactic elements—basically, the size of the parse tree. It may not be quite true that the shortest program is the least work to write, but it's close enough that you're better off aiming for the solid target of brevity than the fuzzy, nearby one of least work. Then the algorithm for language design becomes: look at a program and ask, is there a shorter way to write this?

In practice, writing programs in an imaginary hundred-year language will work to varying degrees depending on how close you are to the core. Sort routines you can write now. But it would be hard to predict now what kinds of libraries might be needed in a hundred years. Presumably many libraries will be for domains that don't even exist yet. If SETI@home works, for example, we'll need libraries for communicating with aliens. Unless of course they are sufficiently advanced that they already communicate in XML.

At the other extreme, I think you might be able to design the core language today. In fact, some might argue that it was already mostly designed in 1958.

If the hundred-year language were available today, would we want to program in it? One way to answer this question is to look back. If present-day programming languages had been available in 1960, would anyone have wanted to use them?

In some ways, the answer is no. Languages today assume infrastructure that didn't exist in 1960. For example, a language in which indentation is significant, like Python, would not work very well on printer terminals. But putting such problems aside— assuming, for example, that programs were all just written on paper—would programmers of the 1960s have liked writing programs in the languages we use now?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Hackers and Painters: Big Ideas from the Computer Age»

Представляем Вашему вниманию похожие книги на «Hackers and Painters: Big Ideas from the Computer Age» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Hackers and Painters: Big Ideas from the Computer Age»

Обсуждение, отзывы о книге «Hackers and Painters: Big Ideas from the Computer Age» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x