The real question is, how far up the ladder of abstraction will parallelism go? In a hundred years will it affect even application programmers? Or will it be something that compiler writers think about, but which is usually invisible in the source code of applications?
One thing that does seem likely is that most opportunities for Parallelism will be wasted. This is a special case of my more general prediction that most of the extra computer power we're given will go to waste. I expect that, as with the stupendous speed of the underlying hardware, parallelism will be something that is available if you ask for it explicitly, but ordinarily not used. This implies that the kind of parallelism we have in a hundred years will not, except in special applications, be massive parallelism. I expect for ordinary programmers it will be more like being able to fork off processes that all end up running in parallel.
And this will, like asking for specific implementations of data structures, be something that you do fairly late in the life of a program, when you try to optimize it. Version 1s will ordinarily ignore any advantages to be got from parallel computation, just as they will ignore advantages to be got from specific representations of data.
Except in special kinds of applications, parallelism won't pervade the programs that are written in a hundred years. It would be premature optimization if it did.
How many programming languages will there be in a hundred years? There seem to be a huge number of new programming languages lately. Part of the reason is that faster hardware has allowed programmers to make different tradeoffs between speed and convenience, depending on the application. If this is a real trend, the hardware we'll have in a hundred years should only increase it.
And yet there may be only a few widely used languages in a hundred years. Part of the reason I say this is optimism: it seems that, if you did a really good job, you could make a language that was ideal for writing a slow version 1, and yet with the right optimization advice to the compiler would also yield fast code when necessary. So, since I'm optimistic, I'm going to predict that despite the huge gap they'll have between acceptable and maximal efficiency, programmers in a hundred years will have languages that can span most of it.
As this gap widens, profilers will become increasingly important. Little attention is paid to profiling now. Many people still seem to believe that the way to get fast applications is to write compilers that generate fast code. As the gap between acceptable and maximal performance widens, it will become increasingly clear that the way to get fast applications is to have a good guide from one to the other.
When I say there may only be a few languages, I'm not including domainspecific "little languages." I think such embedded languages are a great idea, and I expect them to proliferate. But I expect them to be written as thin enough skins that users can see the general-purpose language underneath.
Who will design the languages of the future? One of the most exciting trends in the last ten years has been the rise of open source languages like Perl, Python, and Ruby. Language design is being taken over by hackers. The results so far are messy, but encouraging. There are some stunningly novel ideas in Perl, for example. Many are stunningly bad, but that's always true of ambitious efforts. At its current rate of mutation, God knows what Perl might evolve into in a hundred years.
It's not true that those who can't do, teach (some of the best hackers I know are professors), but it is true that there are a lot of things that those who teach can't do. Research imposes constraining caste restrictions. In any academic field, there are topics that are ok to work on and others that aren't. Unfortunately the distinction between acceptable and forbidden topics is usually based on how intellectual the work sounds when described in research papers, rather than how important it is for getting good results. The extreme case is probably literature; people studying literature rarely say anything that would be of the slightest use to those producing it.
Though the situation is better in the sciences, the overlap between the kind of work you're allowed to do and the kind of work that yields good languages is distressingly small. (Olin Shivers has grumbled eloquently about this.) For example, types seem to be an inexhaustible source of research papers, despite the fact that static typing seems to preclude true macros—without which, in my opinion, no language is worth using.
The trend is not merely toward languages being developed as open source projects rather than "research," but toward languages being designed by the application programmers who need to use them, rather than by compiler writers. This seems a good trend and I expect it to continue.
Unlike physics in a hundred years, which is almost necessarily impossible to predict, it may be possible in principle to design a language now that would appeal to users in a hundred years.
One way to design a language is to just write down the program you'd like to be able to write, regardless of whether there is a compiler that can translate it or hardware that can run it. When you do this you can assume unlimited resources. It seems like we ought to be able to imagine unlimited resources as well today as in a hundred years.
What program would one like to write? Whatever is least work. Except not quite: whatever would be least work if your ideas about programming weren't already influenced by the languages you're currently used to. Such influence can be so pervasive that it takes a great effort to overcome it. You'd think it would be obvious to creatures as lazy as us how to express a program with the least effort. In fact, our ideas about what's possible tend to be so limited by whatever language we think in that easier formulations of programs seem very surprising. They're something you have to discover, not something you naturally sink into.
One helpful trick here is to use the length of the program as an approximation for how much work it is to write. Not the length in characters, of course, but the length in distinct syntactic elements—basically, the size of the parse tree. It may not be quite true that the shortest program is the least work to write, but it's close enough that you're better off aiming for the solid target of brevity than the fuzzy, nearby one of least work. Then the algorithm for language design becomes: look at a program and ask, is there a shorter way to write this?
In practice, writing programs in an imaginary hundred-year language will work to varying degrees depending on how close you are to the core. Sort routines you can write now. But it would be hard to predict now what kinds of libraries might be needed in a hundred years. Presumably many libraries will be for domains that don't even exist yet. If SETI@home works, for example, we'll need libraries for communicating with aliens. Unless of course they are sufficiently advanced that they already communicate in XML.
At the other extreme, I think you might be able to design the core language today. In fact, some might argue that it was already mostly designed in 1958.
If the hundred-year language were available today, would we want to program in it? One way to answer this question is to look back. If present-day programming languages had been available in 1960, would anyone have wanted to use them?
In some ways, the answer is no. Languages today assume infrastructure that didn't exist in 1960. For example, a language in which indentation is significant, like Python, would not work very well on printer terminals. But putting such problems aside— assuming, for example, that programs were all just written on paper—would programmers of the 1960s have liked writing programs in the languages we use now?
Читать дальше