Walter Isaacson - Einstein - His Life and Universe

Здесь есть возможность читать онлайн «Walter Isaacson - Einstein - His Life and Universe» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: History, biography, Physics, Unified Field Theories, Biography & Autobiography, Physicists, Relativity, Science & Technology, Прочая научная литература, Relativity (Physics), General, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Einstein: His Life and Universe: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Einstein: His Life and Universe»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

**By the author of the acclaimed bestseller *Benjamin Franklin*, this is the first full biography of Albert Einstein since all of his papers have become available.**
How did his mind work? What made him a genius? Isaacson's biography shows how his scientific imagination sprang from the rebellious nature of his personality. His fascinating story is a testament to the connection between creativity and freedom.
Based on newly released personal letters of Einstein, this book explores how an imaginative, impertinent patent clerk -- a struggling father in a difficult marriage who couldn't get a teaching job or a doctorate -- became the mind reader of the creator of the cosmos, the locksmith of the mysteries of the atom and the universe. His success came from questioning conventional wisdom and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals.
These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the last century, when Einstein helped usher in the modern age.
### Amazon.com Review
As a scientist, Albert Einstein is undoubtedly the most epic among 20th-century thinkers. Albert Einstein as a man, however, has been a much harder portrait to paint, and what we know of him as a husband, father, and friend is fragmentary at best. With *Einstein: His Life and Universe*, Walter Isaacson (author of the bestselling biographies *Benjamin Franklin* and *Kissinger*) brings Einstein's experience of life, love, and intellectual discovery into brilliant focus. The book is the first biography to tackle Einstein's enormous volume of personal correspondence that heretofore had been sealed from the public, and it's hard to imagine another book that could do such a richly textured and complicated life as Einstein's the same thoughtful justice. Isaacson is a master of the form and this latest opus is at once arresting and wonderfully revelatory. *--Anne Bartholomew*
**Read "The Light-Beam Rider," the first chapter of Walter Isaacson's *Einstein: His Life and Universe*.**
* * *
**Five Questions for Walter Isaacson**
**Amazon.com:** What kind of scientific education did you have to give yourself to be able to understand and explain Einstein's ideas?
**Isaacson:** I've always loved science, and I had a group of great physicists--such as Brian Greene, Lawrence Krauss, and Murray Gell-Mann--who tutored me, helped me learn the physics, and checked various versions of my book. I also learned the tensor calculus underlying general relativity, but tried to avoid spending too much time on it in the book. I wanted to capture the imaginative beauty of Einstein's scientific leaps, but I hope folks who want to delve more deeply into the science will read Einstein books by such scientists as Abraham Pais, Jeremy Bernstein, Brian Greene, and others.
**Amazon.com:** That Einstein was a clerk in the Swiss Patent Office when he revolutionized our understanding of the physical world has often been treated as ironic or even absurd. But you argue that in many ways his time there fostered his discoveries. Could you explain?
**Isaacson:** I think he was lucky to be at the patent office rather than serving as an acolyte in the academy trying to please senior professors and teach the conventional wisdom. As a patent examiner, he got to visualize the physical realities underlying scientific concepts. He had a boss who told him to question every premise and assumption. And as Peter Galison shows in *Einstein's Clocks, Poincare's Maps*, many of the patent applications involved synchronizing clocks using signals that traveled at the speed of light. So with his office-mate Michele Besso as a sounding board, he was primed to make the leap to special relativity.
**Amazon.com:** That time in the patent office makes him sound far more like a practical scientist and tinkerer than the usual image of the wild-haired professor, and more like your previous biographical subject, the multitalented but eminently earthly Benjamin Franklin. Did you see connections between them?
**Isaacson:** I like writing about creativity, and that's what Franklin and Einstein shared. They also had great curiosity and imagination. But Franklin was a more practical man who was not very theoretical, and Einstein was the opposite in that regard.
**Amazon.com:** Of the many legends that have accumulated around Einstein, what did you find to be least true? Most true?
**Isaacson:** The least true legend is that he failed math as a schoolboy. He was actually great in math, because he could visualize equations. He knew they were nature's brushstrokes for painting her wonders. For example, he could look at Maxwell's equations and marvel at what it would be like to ride alongside a light wave, and he could look at Max Planck's equations about radiation and realize that Planck's constant meant that light was a particle as well as a wave. The most true legend is how rebellious and defiant of authority he was. You see it in his politics, his personal life, and his science.
**Amazon.com:** At *Time* and CNN and the Aspen Institute, you've worked with many of the leading thinkers and leaders of the day. Now that you've had the chance to get to know Einstein so well, did he remind you of anyone from our day who shares at least some of his remarkable qualities?
**Isaacson:** There are many creative scientists, most notably Stephen Hawking, who wrote the essay on Einstein as "Person of the Century" when I was editor of *Time*. In the world of technology, Steve Jobs has the same creative imagination and ability to think differently that distinguished Einstein, and Bill Gates has the same intellectual intensity. I wish I knew politicians who had the creativity and human instincts of Einstein, or for that matter the wise feel for our common values of Benjamin Franklin.
* * *
**More to Explore**
*Benjamin Franklin: An American Life*
*Kissinger: A Biography* **
**The Wise Men: Six Friends and the World They Made* ***
* * *
### **From Publishers Weekly**
**Acclaimed biographer Isaacson examines the remarkable life of "science's preeminent poster boy" in this lucid account (after 2003's *Benjamin Franklin* and 1992's *Kissinger*). Contrary to popular myth, the German-Jewish schoolboy Albert Einstein not only excelled in math, he mastered calculus before he was 15. Young Albert's dislike for rote learning, however, led him to compare his teachers to "drill sergeants." That antipathy was symptomatic of Einstein's love of individual and intellectual freedom, beliefs the author revisits as he relates his subject's life and work in the context of world and political events that shaped both, from WWI and II and their aftermath through the Cold War. Isaacson presents Einstein's research—his efforts to understand space and time, resulting in four extraordinary papers in 1905 that introduced the world to special relativity, and his later work on unified field theory—without equations and for the general reader. Isaacson focuses more on Einstein the man: charismatic and passionate, often careless about personal affairs; outspoken and unapologetic about his belief that no one should have to give up personal freedoms to support a state. Fifty years after his death, Isaacson reminds us why Einstein (1879–1955) remains one of the most celebrated figures of the 20th century. *500,000 firsr printing, 20-city author tour, first serial to *Time*; confirmed appearance on *Good Morning America*. (Apr.)*
Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved. **

Einstein: His Life and Universe — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Einstein: His Life and Universe», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Because the two particles were far apart, Einstein was able to assert, or at least to assume, that “all physical interaction has ceased between them.” So his challenge to the Copenhagen interpreters of quantum mechanics, posed as a question to Rosenfeld, was simple: “How can the final state of the second particle be influenced by a measurement performed on the first?” 1

Over the years, Einstein had increasingly come to embrace the concept of realism, the belief that there is, as he put it, “a real factual situation” that exists “independent of our observations.” 2This belief was one aspect of his discomfort with Heisenberg’s uncertainty principle and other tenets of quantum mechanics that assert that observations determine realities. With his question to Rosenfeld, Einstein was deploying another concept: locality.* In other words, if two particles are spatially distant from each other, anything that happens to one is independent from what happens to the other, and no signal or force or influence can move between them faster than the speed of light.

Observing or poking one particle, Einstein posited, could not instantaneously jostle or jangle another one far away. The only way an action on one system can affect a distant one is if some wave or signal or information traveled between them—a process that would have to obey the speed limit of light. That was even true of gravity. If the sun suddenly disappeared, it would not affect the earth’s orbit for about eight minutes, the amount of time it would take the change in the gravitational field to ripple to the earth at the speed of light.

As Einstein said, “There is one supposition we should, in my opinion, absolutely hold fast: the real factual situation of the system S 2is independent of what is done with the system S 1, which is spatially separated from the former.” 3It was so intuitive that it seemed obvious. But as Einstein noted, it was a “supposition.” It had never been proven.

To Einstein, realism and localism were related underpinnings of physics. As he declared to his friend Max Born, coining a memorable phrase, “Physics should represent a reality in time and space, free from spooky action at a distance.” 4

Once he had settled in Princeton, Einstein began to refine this thought experiment. His sidekick, Walther Mayer, less loyal to Einstein than Einstein was to him, had drifted away from the front lines of fighting quantum mechanics, so Einstein enlisted the help of Nathan Rosen, a 26-year-old new fellow at the Institute, and Boris Podolsky, a 49-year-old physicist Einstein had met at Caltech who had since moved to the Institute.

The resulting four-page paper, published in May 1935 and known by the initials of its authors as the EPR paper, was the most important paper Einstein would write after moving to America. “Can the Quantum-Mechanical Description of Physical Reality Be Regarded as Complete?” they asked in their title.

Rosen did a lot of the math, and Podolsky wrote the published English version. Even though they had discussed the content at length, Einstein was displeased that Podolsky had buried the clear conceptual issue under a lot of mathematical formalism. “It did not come out as well as I had originally wanted,” Einstein complained to Schrödinger right after it was published. “Rather, the essential thing was, so to speak, smothered by the formalism.” 5

Einstein was also annoyed at Podolsky for leaking the contents to the New York Times before it was published. The headline read: “Einstein Attacks Quantum Theory / Scientist and Two Colleagues Find It Not ‘Complete’ Even though ‘Correct.’ ” Einstein, of course, had occasionally succumbed to giving interviews about upcoming articles, but this time he declared himself dismayed by the practice. “It is my invariable practice to discuss scientific matters only in the appropriate forum,” he wrote in a statement to the Times, “and I deprecate advance publication of any announcement in regard to such matters in the secular press.” 6

Einstein and his two coauthors began by defining their realist premise: “If without in any way disturbing a system we can predict with certainty the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity.” 7In other words, if by some process we could learn with absolute certainty the position of a particle, and we have not disturbed the particle by observing it, then we can say the particle’s position is real, that it exists in reality totally independent of our observations.

The paper went on to expand Einstein’s thought experiment about two particles that have collided (or have flown off in opposite directions from the disintegration of an atom) and therefore have properties that are correlated. We can take measurements of the first particle, the authors asserted, and from that gain knowledge about the second particle “without in any way disturbing the second particle.” By measuring the position of the first particle, we can determine precisely the position of the second particle. And we can do the same for the momentum. “In accordance with our criterion for reality, in the first case we must consider the quantity P as being an element of reality, in the second case the quantity Q is an element of reality.”

In simpler words: at any moment the second particle, which we have not observed, has a position that is real and a momentum that is real. These two properties are features of reality that quantum mechanics does not account for; thus the answer to the title’s question should be no, quantum mechanics’ description of reality is not complete. 8

The only alternative, the authors argued, would be to claim that the process of measuring the first particle affects the reality of the position and momentum of the second particle. “No reasonable definition of reality could be expected to permit this,” they concluded.

Wolfgang Pauli wrote Heisenberg a long and angry letter.“Einstein has once again expressed himself publicly on quantum mechanics (together with Podolsky and Rosen—no good company, by the way),” he fumed. “As is well known, every time that happens it is a catastrophe.” 9

When the EPR paper reached Niels Bohr in Copenhagen, he realized that he had once again been cast in the role, which he played so well at the Solvay Conferences, of defending quantum mechanics from yet another Einstein assault. “This onslaught came down on us as a bolt from the blue,” a colleague of Bohr’s reported. “Its effect on Bohr was remarkable.” He had often reacted to such situations by wandering around and muttering, “Einstein . . . Einstein . . . Einstein!” This time he added some collaborative doggerel as well: “Podolsky, Opodolsky, Iopodolsky, Siopodolsky . . .” 10

“Everything else was abandoned,” Bohr’s colleague recalled. “We had to clear up such a misunderstanding at once.”Even with such intensity, it took Bohr more than six weeks of fretting, writing, revising, dictating, and talking aloud before he finally sent off his response to EPR.

It was longer than the original paper. In it Bohr backed away somewhat from what had been an aspect of the uncertainty principle: that the mechanical disturbance caused by the act of observation was a cause of the uncertainty. He admitted that in Einstein’s thought experiment, “there is no question of a mechanical disturbance of the system under investigation.” 11

This was an important admission. Until then, the disturbance caused by a measurement had been part of Bohr’s physical explanation of quantum uncertainty. At the Solvay Conferences, he had rebutted Einstein’s ingenious thought experiments by showing that the simultaneous knowledge of, say, position and momentum was impossible at least in part because determining one attribute caused a disturbance that made it impossible to then measure the other attribute precisely.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Einstein: His Life and Universe»

Представляем Вашему вниманию похожие книги на «Einstein: His Life and Universe» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Einstein: His Life and Universe»

Обсуждение, отзывы о книге «Einstein: His Life and Universe» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x