Каждое занятие начинается с краткого воспроизведения материала предыдущей лекции, которое проделывает кто-нибудь из учащихся. Но литографические отпечатки лекций запаздывают и раздаются лишь спустя неделю, то есть через четыре занятия. При подготовке к очередному опросу политехникам приходится рассчитывать только на свои конспекты и на свое понимание лекционного материала. Поэтому они группируются вокруг сильных студентов, сообща прорабатывая все трудные и тонкие места прослушанной темы. Пуанкаре порой разочаровывает своих приверженцев тем, что не стремится к подробной записи лекций.
Курс математического анализа в Политехнической школе ведет первый математик Франции Эрмит, имя которого пользуется авторитетом в широких научных кругах Европы. Механику Пуанкаре слушает в изложении выдающегося ученого Резаля. Геометрию преподает достаточно известный в то время математик Маннгейм. Астрономию читает прекрасный астроном Фэй. Физика находится в ведении Корню, ставшего впоследствии председателем Французского физического общества. По окончании учебного года политехники сдают чрезвычайно строгие экзамены. Среди экзаменаторов имеются такие известные в научном мире имена, как Жордан (по математическому анализу), Брессе (по механике), Кабар (по физике). Помимо физико-математических дисциплин, учащимся преподаются химия, начертательная геометрия, черчение, фортификация, архитектура и даже история и литература.
Общение с прославленным Эрмитом создает у слушателей ощущение непосредственной причастности к великому таинству математического творчества. Он любит начинать свою лекцию словами: «Начнем с тождества…», после чего на доске появлялась формула, в точности и подлинности которой можно было не сомневаться, хотя лектор не считал нужным посвящать аудиторию в загадку ее происхождения. С этого отправного пункта Эрмит увлекал своих слушателей в захватывающее путешествие через удивительные математические метаморфозы и преобразования, пока они не достигали заветного результата. Казалось, что все излагаемые им идеи рождаются прямо на их глазах, что они присутствуют на потрясающем сеансе неповторимой математической импровизации.
Однажды Эрмит заболел, и заменял его Лагерр, еще одна математическая знаменитость. Кто-то из однокурсников попросил Анри объяснить сложнейшее доказательство, которое Лагерр провел на лекции. Но Анри по обыкновению не сделал записи и решил по памяти воспроизвести все выкладки. На очередном занятии репетитор Альфан вызывает к доске как раз того студента, которому Анри давал разъяснения. Внимательно выслушав ход его рассуждений, преподаватель пронизывающим взором окидывает фигуру у доски и спрашивает: «Это твое доказательство?» — «Это твое доказательство?» — как эхо переспрашивает незадачливый студент, обращаясь к Пуанкаре. Переждав, пока затихнет взрыв смеха в аудитории, Альфан удовлетворенно произносит: «Тогда я не удивляюсь». Через некоторое время Лагерр, которому Альфан рассказал об этом забавном эпизоде, подозвал к себе Анри и сообщил ему, что данное им доказательство является более простым, чем приведенное на лекции. «Не найдете ли вы время для того, чтобы заменить в отпечатках лекций мой метод доказательства вашим?» — обратился он к Пуанкаре с неожиданной просьбой.
Не только математики Политехнической школы приметили одаренного юношу. Благодаря Аппелю у него завязывается близкое знакомство с некоторыми преподавателями Высшей Нормальной школы, в частности, со знаменитым математическим дуэтом — Брио и Буке.
Еще со времени учебы в Нормальной школе между Шарлем Брио и Жаном Буке завязалась прочная дружба. После окончания школы в 1841 году они разъехались в различные провинциальные коллежи преподавать математику. Судьба вновь свела их вместе на Факультете наук в Лионе. С этого момента их дружба переросла в тесное плодотворное сотрудничество. В математике вообще большая редкость творческое содружество двух ученых, а во французской математике того времени это был единственный в своем роде пример. В середине XIX века друзья перебрались в Париж. Буке в течение двадцати лет преподавал в парижских лицеях, а затем занял должность профессора математики в Сорбонне и вел курсы механики и астрономии в Нормальной школе. Брио сначала преподавал в Нормальной школе, а впоследствии возглавил кафедру математической физики в Парижском университете. Известность и славу обоим математикам принесла их совместная монография 1856 года, в которой они сформулировали основную задачу теории дифференциальных уравнений. Их основополагающий труд определил развитие этой теории на целые десятилетия, став поворотным пунктам в учении о дифференциальных уравнениях. Фундаментальное сочинение оказало влияние практически на всех, кто в последующие годы работал в этой области математики. Не избежал этого влияния и Пуанкаре, со студенческих лет испытавший в непосредственном общении с замечательными математиками их стимулирующее воздействие. Его первые научные изыскания будут связаны именно с теорией дифференциальных уравнений, с дальнейшим развитием и обобщением идей и методов Брио и Буке. Но все это в будущем, а пока Анри делает скромные попытки к самостоятельному научному творчеству. Например, он пытается усовершенствовать теорию эллиптического маятника, которую им излагал на лекциях Резаль.
Читать дальше