Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь есть возможность читать онлайн «Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пространства, времена, симметрии. Воспоминания и мысли геометра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пространства, времена, симметрии. Воспоминания и мысли геометра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пространства, времена, симметрии. Воспоминания и мысли геометра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некомпактные вещественные простые группа Ли класса Bn локально изоморфны группам унимодулярных псевдоoртогональных матриц алгебры M(2n + 1).

Комплексная простая группа Ли класса Cn локально изоморфна группе симплектических матриц алгебры CM(2n).

Расщепленная простая группа Ли класса Cn локально изоморфна группе симплектических матриц алгебры M(2n) и группе унитарных матриц алгебры HM(n).

Компактная простая группа Ли класса Cn локально изоморфна группе унитарных матриц алгебры HM(n).

Остальные некомпактные вещественные простые группы Ли класса Cn локально изоморфны группам псевдоунитарных матриц алгебры HM(n).

Компактная и расщепленная простые группы Ли класса C1 локально изоморфны, соответственно, группам автоморфизмов алгебр H и H'.

Комплексная простая группа Ли класса Dn локально изоморфна группе унимодулярных ортогональных матриц алгебры CM(2n).

Kомпaктная простая группа Ли класса Dn локально изоморфна группе унимодулярных ортогональных матриц алгебры M(2n).

Некомпaктные вещественные простые группы Ли класса Dn локально изоморфны группам унимодулярных псевдоортогональных матриц алгебры M(2n) и группе симплектических матриц алгебры HM(n).

Группы унимодулярных ортогональных и псевдоортогональных матриц алгебры M(n) являются фактор-группами подгрупп алгебр А(п) и А(n-k, k) по их инвариантным подгруппам, состоящим из элементов 1 и -1 ; эти подгруппы называются спинорными группами.

Рассщепленная простая группа Ли класса An локально изоморфна группе проективных преобразований n-мерного вещественного проективного пространства.

Компактная простая группа Ли класса An локально изоморфна группе движений n-мерного комплексного эрмитова эллиптического пространства.

Некомпактные вещественные простые группы Ли класса An локально изоморфны группам движений n-мерных комплексных эрмитовых гиперболического псевдоэллиптических и псевдогиперболических пространств и группе проективных преобразований (n-1)/2-мерного кватернионного проективного пространства.

Компактная простая группа Ли класса Bn локально изоморфна группе движений 2n-мерного вещественного эллиптического пространства.

Некомпактные простые группы Ли класса Bn локально изоморфны группам движений 2n-мерных вещественных гиперболического, псевдоэллиптических и псевдогиперболических пространств.

Рассщепленная простая группа Ли класса Cn локально изоморфна группе симплектических преобразований (2n-1)-мерного симплектического пространства.

Компактная простая группа Ли класса Cn локально изоморфна группе движений (n-1)-мерного кватернионного эрмитова эллиптического пространства.

Остальные некомпактные вещественные простые группы Ли класса Cn локально изоморфны группам движений (n-1)-мерных кватернионных гиперболического, псевдоэллиптических и псевдогиперболических пространств.

Компактная простая группа Ли класса Dn локально изоморфна группе движений (n-1)-мерного вещественного эллиптического пространства.

Некомпактные простые группы Ли класса Dn локально изоморфны группам движений (2n-1)-мерных вещественных гиперболического, псевдоэллиптических и псевдогиперболических пространств и группе симплектических преобразований (2n-1)-мерного кватернионного симпектического пространства.

Классические простые группы Ли допускают также интерпретации в виде групп движений пространств над тензорными произведениями алгебр C, C', H и H'. В частности из того, что тензорное произведение двух полей C изоморфно прямой сумме этих полей, вытекает, что эрмитово эллиптическое пространство над тензорным произведением двух полей C допускает модель в виде пары комплексных эрмитовых эллиптических полей той же размерности. Из того, что тензорное произведение алгебр C и H изоморфно алгебре CM(2), вытекает, что n-мерное эрмитово эллиптическое пространство допускает модель в виде многообразия прямых линий (2n + 1)-мерного комплексного эрмитова эллиптического пространства. Из того, что тензорное произведение двух алгебр H изоморфно алгебре M(4), вытекает, что n-мерное эрмитово эллиптическое пространство над тензорным произведением двух алгебр H допускает модель в виде многообразия 3-мерных плоскостей (4n+3)-мерного вещественного эллиптического пространства. Эти модели были построены моими учениками Н.Т.Аббасовым и Л.В.Румянцевой.

Образы симметрии

Все вещественные и эрмитовы неевклидовы пространства, группы движений которых простые группы Ли, изометричны симметрическим римановым или псевдоримановым пространствам, поэтому точки этих пространств являются образами симметрии. Образами симметрии являются также 0-пары ( т.е. пары точка + гиперплоскость) проективных пространств и m-пары (т.е.пары n-m-1)-мерная плоскости n-мерного проективного пространства. Отражение точки Х от 0-пары, состоящей из точки А и гиперплоскости U, переводит точку Х в точку X' прямой АХ, являющуюся четвертой гармонической для точек А, Х и точки пересечения прямой АХ с гиперплоскостью U. Отражение точки Х от m-пары, состоящей из плоскостей А и U, переводит точку Х в точку X' единственной прямой, проходящей через точку Х и пересекающей плоскости А и U, которая является четвертой гармонической для точки Х и точки пересечения упомянутой прямой А с плоскостями А и U.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Представляем Вашему вниманию похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Обсуждение, отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x