Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь есть возможность читать онлайн «Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пространства, времена, симметрии. Воспоминания и мысли геометра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пространства, времена, симметрии. Воспоминания и мысли геометра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пространства, времена, симметрии. Воспоминания и мысли геометра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я изучал также историю бесконечномерной геометрии, основанную Сальваторе Пинкерле (1853-1936) и Давидом Гильбертом (1862-1943), которые рассматривали в качестве точек и векторов бесконечномерных пространств функции. Замечу, что русский математик Владимир Андреевич Стеклов, который бурно протестовал против многомерной геометрии Римана, в своих работах об "ортогональных функциях" фактически пользовался бесконечномерным пространством Гильберта. Геометрия гильбертова пространства широко применяется в квантовой механике.

Группы вращений гиперсфер в гильбертовых пространствах некомпактны, как и сами эти гиперсферы. Я несколько раз упоминал унитарные представления некомпактных простых групп Ли, опреденные Израилем Моисеевича Гельфандом (р. 1913) и его сотрудниками и Хариш - Чандрой (1923-1983). Эти представления являются гомоморфными отображениями некомпактных простых групп Ли в группы вращений гиперсфер комплексных гильбертовых пространств.

Глава 3. СИММЕТРИИ И УСТОЙЧИВОСТЬ Симметрии, двойственность и тройственность

В главе "Пространства и группы" я упоминал принцип двойственности проективной геометрии и обобщения этого принципа, предложенные Э.Картаном, в том числе принцип тройственности, а также группы, которые И.М.Гельфанд предложил называть двойственными и тройственными по Картану. Обобщения принципа двойственности, предложенные Картаном, связаны с двусторонней и трехсторонней симметриями диаграмм Дынкина соответственных групп Ли.

Многие мои работы, начиная с докторской диссертации и работы 1949 г., помещенной в сборнике моих переводов работ Картана, посвящены образам симметрии различных пространств, образующим модели симметрических пространств Картана, определяемых двусторонними симметриями. Образы симметрии различных пространств изучались и многими моими учениками. В моей книге 2003г. совместной с М.П. Замаховским рассматриваются обобщения симметрических пространств, называемые периодическими пространствами. Эти пространства определяются k-сторонними симметриями при k >2.

Симметрии привлекали внимание математиков и философов еще в древности. Правильные многогранники, обладающие максимальной симметрией, были открыты пифагорейцами и играли особую роль в философии Платона, вследствие чего их часто называют "платоновыми телами". Платон считал, что атомы четырех греческих элементов имеют форму четырех правильных многогранников: атомы огня имеют форму правильного тетраэдра, атомы воздуха - форму октаэдра, атомы воды - форму икосаэдра, а атомы земли - форму куба. Форму пятого правильного многогранника - додекаэдра по мнению Платона имеет мир в целом, а на 12 гранях этого додекаэдра по его мнению изображены 12 знаков зодиака. Группа симметрии тетраэдра состоит из 24 элементов, группы симметрии октаэдра и куба - из 48 элементов, группы симметрии икосаэдра и додекаэдра - из 120 элементов.

Великий математик первой половины ХХ века Герман Вейль в своей книге "Симметрия" отметил, что изображения божеств, святых и священных животных в ассиро-вавилонском, древнегреческом, римском и средневековом искусстве всегда симметричны. Симметрия этих изображений указывает на то, что их авторы ощущали глубокую связь между божественным и симметричным.

Двойственность у пифагорейцев

Пары противоположных свойств играли важную роль в философии пифагорейцев. Аристотель писал о них в своей "Метафизике": "Пифагорейцы утверждают, что имеется десять начал, расположенных попарно: предел и беспредельное, нечетное и четное, единое и множество, правое и левое, мужское и женское, покоящееся и движущееся, прямое и кривое, свет и тьма, хорошее и дурное, квадратное и продолговатое".

Из этих пар противополижностей 1-я, 4-я,7-я и 10-я пары относятся к геометрии, 2-я и 3-я - к арифметике, 5-я - к биологии, 6-я - к механике, 8-я - к физике, 9-я - к этике. Пифагорейцы рассматривали все эти пары противоположностей вместе потому, что они не выделяли отдельных наук из единой универсальной науки.

В каждой паре противоположностей первую пифагорейцы считали совершенной, а вторую - несовершенной.

Пифагорейцы отождествляли единицы не только с точками, но и с душами неродившихся или умерших людей, а вещи, в том числе тела людей, отождествлялись с числами, поэтому пифагорейская пара противоположностей "единое и множество" по существу совпадает с парой "душа и тело".

Пара противоположностей "единое и множество" - такая же древняя, как пара "душа и тело". Первоначально это были два первых числа, впоследствии второе из этих двух "чисел" превратилось в число 2, и "чисел" стало три - 1, 2 и "много". Затем это новое "много" превратилось в число 3 и появился числовой ряд 1, 2, 3, 4, 5, 6, "много". Впоследствии и этот ряд расширился и последнее слово "много" превратилось в число 7. О том, что слово "семь" первоначально обозначало неопределенно большое количество, свидетельствуют русские пословицы "семь бед - один ответ", "у семи нянек дитя без глаза", "один с сошкой - семеро с ложкой", "семь раз отмерь, один раз отрежь". Позже такими числами, названия которых прежде обозначали неопределенно большое количество, стали 12 и 40. Числа 2, 3, 7, 12 и 40 и позже сохранили мистический характер, этим объясняется особая роль этих чисел во многих религиях и культурах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Представляем Вашему вниманию похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Обсуждение, отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x