В III книге ал-Каши распространил шестидесятеричную позиционную систему с дробей на натуральные числа. Шестидесятеричными дробями, следуя Птолемею, пользовались астрономы средневекового Востока. Ал-Каши также распространил десятичную позиционную систему с натуральных чисел на дроби, т.е. ввел десятичные дроби.
В IV книге ал-Каши привел таблицу удельных весов различных веществ, а также поместил архитектурную главу.
В V книге ал-Каши привел цифры сияка, которыми пользовались купцы.
"Трактат об окружности" aл-Каши был посвящен вычислению приближенного значения числа п с максимальной практически необходимой точностью. Ал-Каши рассмотрел окружность с радиусом равным радиусу сферы неподвижных звезд и за приближенную величину ее длины принял среднее арифметическое между периметрами вписанного и описанного правильных N-угольников, где число N должно быть таким, чтобы разность между этими периметрами была бы меньше толщины конского волоса. Ал-Каши подсчитал, что N = 3.228. Вычисления ал-Каши производил в шестидесятеричных дробях, но результат выразил также и в десятичных дробях. Полученное им приближенное значение п имало 17 верных десятичных знаков.
В трактате об определении синуса 1о ал-Каши решал задачу необходимую для составления таблицы синусов в "Астрономических таблицах Улугбека". Для этого он решал кубическое уравнение 4x3+q =3x, где q = sin 3о и х = sin 1о. Так как sin 1о - небольшая величина, ее куб еще меньше, за 1-е приближение ал-Каши принимает x1=q/3, 2-е приближение - x2=(q+4x13)/3, 3-е приближение - x 3=(q+4x23)/3 и т.д.
Этой же проблеме был посвящен трактат самого Улугбека, который я перевел и опубликовал в ИМИ в1960 г. Мы получили ксерокопию списка каирской арабской рукописи этого трактата из Берлина. Рукопись была анонимная. Другая анонимная арабская рукопись того же трактата имеется в Стамбуле и турецкий историк науки Салех Зеки опубликовал ее краткое изложение в своей книге "Оставшиеся следы". Он считал, автором этого трактата ар-Руми на основании сообщения Мирима Челеби о том, что его дед ар-Руми написал трактат об этой проблеме. Поэтому мы также считали автором этого трактата ар-Руми.
В выяснении авторства этого трактата важную роль сыграл узбекский академик Ташмухаммед Ниязович Кары-Ниязов, автор книги "Астрономическая школа Улугбека". Я часто спорил с ним на тему, был ли сам Улугбек ученым, или только покровителем наук. Однажды мы встретились с ним в Институте востоковедения Академии наук Узбекистана. "Сейчас я вам докажу, что Улугбек сам был автором научных трактатов" - сказал Кары-Ниязов мне и попросил рукопись комментариев ал-Бирджанди к "Астрономическим таблицам Улугбека". Получив рукопись, он показал мне слова ал-Бирджанди о том, что об определении синуса одного градуса были написаны два трактата, один - "султаном геометром" ал-Каши, а другой - "султаном-мучеником" Улугбеком. Далее ал-Бирджанди подробно описал содержание анонимного трактата. Что же касается трактата ал-Руми, описанного его внуком, то он был написан на персидском языке. Сопоставив все это, мы с А.Ахмедовым опубликовали в 1975 г. в Ташкенте статью о том, что автором анонимного трактата был не ар-Руми, а Улугбек. В 1976 г. я поместил в "Хрестоматии по истории математики" важнейшую часть этого трактата, указав, что его автором был Улугбек Об этом я и Ахмедов сделали доклад на симпозиуме в Стамбуле в 1994 г., этот доклад был опубликованный в 2000 г.
В главе "Пенсильвания"я подробно описал историю публикации английского перевода математического трактата Улугбека с его арабским текстом в статье, написанной мной вмесе с Я.П.Хогендайком.
В 2000 г. в родном городе ал-Каши Кашане состоялся международный конгресс, повященный 600-летию ал-Каши. На этом конгрессе М.М.Рожанская прочла мой доклад о трактатах ал-Каши и Улугбека об определении синуса 1о.
Гипергеометрические названия степеней в Европе
Выше я упоминал, что названия степеней в "Арифметике" Диофанта были аддитивные, т.е.квадрато-кубом он называл 5-ю степень (5=2+3).
Такие же названия степеней применяли ат-Туси, ал-Каши и другие математики, писавшие на арабском языке.
Однако индийские математики применяли более сложную систему названий степеней: для тех степеней, которые можно представить как произведения чисел 2 и 3, они пользовались мультипликативными названиями, т.е. называли квадрато-кубом не 5-ю, а 6-ю степень (2.3=6), но для тех степеней, которые нельзя представить в виде произведений чисел 2 и 3, они пользовались аддитивными названиями с добавлением специального термина, указывающего, что это название аддитивное.
Читать дальше