В 1-й части Хайям предложил доказательство V постулата Евклида на основе более наглядного постулата Аристотеля. В этом доказательстве Хайям впервые рассматривал четырехугольник с двумя прямыми углами при основании и двумя равными боковыми сторонами и три гипотезы о его равных верхних углах. Этот четырехугольник и три гипотезы рассматривал в XVIII веке Дж.Саккери. Как и в случае четырехугольника Ибн ал-Хайсама гипотеза острого угла выполняется в неевклидовой геометрии Лобачевского, гипотеза тупого угла - в неевклидовой геометрии Римана, а гипотеза прямого угла - в евклидовой геометрии.
Во 2-й части Хайям переоткрыл определение Теэтета равенства отношений, основанное на представлении отношений в виде непрерывных дробей и доказал эквивалентность этого определения и определения Евдокса, изложенного в V книге "Начал" Евклида. Обрывая непрерывные дроби можно получить рациональные приближения отношений с любой степенью точности.
В 3-ей части Хайям, развивая идею Теона о "знаменованиях" отношений, связывал с каждым отношением геометрических величин А/В обобщение понятия числа равносильное положительному вещественному числу. Подобно ал-Бируни Хайям писал: "Выберем единицу и сделаем ее отношение к величине G, как А к B. Будем смотреть на величину G не как на линию, поверхность, тело или время, но будем смотреть на нее, как на величину отвлеченную разумом от всего этого и принадлежащую к числам, но не к числам абсолютным и настоящим". Под абсолютными и настоящими числами Хайям имел в виду натуральные числа. Далее Хайям доказывает, что "число" G составного отношения равно произведению аналогичных "чисел" отношений, из которых состоит это составное отношение.
В механическом трактате решается задача определения количеств золота и серебра в сплаве с помощью его взвешивания в воздухе и в воде.
В философском трактате "Ответ на три вопроса" Хайям подверг ревизии "триаду Авиценны", считая, что общие понятия бывают только в вещах и в человеческом разуме. Эта утверждение Хайяма совпадает с точкой зрения европейских номиналистов, согласно которым общие понятия это только названия (nomina).
Сохранившийся отрывок из "Маликшахских астрономических таблиц" содержит список 100 неподвижных звезд с указанием их эклиптических долгот и широт и приписываемых им "темпераментов".
В персидской "Книге о новом годе" ("Науруз- наме") описывается празднование зороастрийского Нового года (Науруза) в доисламском Иране и реформы персидского солнечного календаря. Лунный год, введенный в Иране после его завоевания арабами, был короче солнечного на 10 дней и был неудобен для сельскохозяйственных работ. Поэтому иранские крестьяне пользовались доисламским солнечным календарем. Так как солнечный год немного больше 365 дней, его начало приводили к одному и тому же времени с помощью високосных годов, которые определялись различными календарными реформами. Хайям описал эти реформы и упомянув ту реформу, для разработки которой он был приглашен султаном Маликшахом в его столицу Исфахан, указал, что он не смог довести эту реформу до конца. Доисламский новый год начинался в день весеннего равноденствия и в организованной Хайямом обсерватории в течение ряда лет проводились наблюдения наступление этого момента. Хотя Хайям не пришел к окончательному выводу, предложенная им система високосов, состояла в том, что в течение 33-летнего периода было 8 високосных лет. В этом календаре ошибка в 1 день образуется за 5000 лет, в то время как в грегорианском календаре такая ошибка образуется за 3333 года. Календарь Хайяма, называемый по имени султана Джалал ад -Дина Маликшаха "джалали" или "малики", был хорошо известен в странах Востока. Хайяму не удалось довести разработку реформы до конца, из-за убийства Маликшаха ассасинами и разрушения обсерватории Хайяма. Хайям надеялся своей книгой побудить преемников Маликшаха дать ему возможность продолжить свои наблюдения.
Позднее я и мои ученики перевели на русский язык и издали в ИМИ другой алгебраический трактат Хайяма, еще один его трактат о весах и трактат о музыке.
В 1957 г, мы с С.Б.Морочником опубликовали книгу "Омар Хайям - поэт, мыслитель и ученый". В 1965 г. мы с А.П.Юшкевичем опубликовали научную биографию Хайяма. В 1999 г. я и Ш.А. де Фушекур опубликовали статью "Омар Хайям" во 2-м издании Энциклопедии Ислама.
В 2000 г. в родном городе Хайяма Нишапуре состаялся Международный конгресс посвященный 900-летию Хайяма. На этом конгрессе был прочитан мой доклад об исследованиях творчества Хайяма в России.
Читать дальше