Ответ.Да, следует.
3.5. Прав, если считать, что марсиан не существует: ведь любое утверждение обо всех элементах пустого множества истинно.
3.6. 1) Нельзя, так как сумма масс 1 + 2 +… + 30 = 31 × 15 – нечетное число. 2) Можно. Пример можно построить, например, так. Сначала сформируем пятнадцать пар гирек веса 31: 1 + 30, 2 + 29 и т. д. Затем возьмем в каждую из трех куч по пять любых пар.
3.7. 1) Предположим, что таблицу заполнить удалось. Если найти сумму чисел во всех строках, то она окажется четным числом, а если во всех столбцах – то нечетным. Но это одно и то же число.
Ответ.Нельзя.
2) Для приведения примера достаточно заполнить первую строку двойками, а остальные – единицами. Заметим, что если заполнить квадрат 3x3 как попало, а остальные числа ставить в соответствии с условием, пример не может не получиться!
Ответ.Можно.
3.8. Нет. Контрпример изображен на рис. 25.
Рис. 25
3.9. Нет. Контрпример: 2 7+ 15 = 128 + 15 = 143 = 11 · 13.
Комментарий.В настоящее время неизвестно ни одной формулы для вычисления простых чисел.
3.10. Приведем несколько из многих возможных примеров:
1) 1111111212 делится на 12, 1111111125 делится на 15, 1111111432 делится на 16.
2) 111… 1151121792 делится на 128 (все пропущенные цифры – единицы), 222… 22399925 делится на 225 (все пропущенные цифры – двойки).
Ответ.Да.
Комментарий.Для проверки примеров достаточно выполнить деление в столбик. А придумать их можно с помощью признаков делимости: для делимости на 12 надо обеспечить делимость на 3 и 4, для делимости на 15 – на 3 и 5, на 225 – на 9 и 25. Но при сумме цифр 12 или 15 число заведомо кратно 3, а при сумме цифр 225 – кратно 9. Поэтому достаточно с помощью последних цифр обеспечить делимость соответственно на 4, 5 и 25, а затем лишь подобрать нужную сумму цифр. Кроме того, признаки делимости на 2 и 4 можно обобщить: число делится на n -ю степень двойки тогда и только тогда, когда на нее делится число, составленное из n последних цифр исходного. В частности, делимость на 16 проверяется по четырем последним цифрам, а на 128 – по семи. Остальные цифры многозначного числа выбираем любые, лишь бы сумма их была соответственно 16 или 128. Предлагаем читателю самостоятельно составить стозначное число с суммой цифр 144, делящееся на 144.
3.11.1) Высказывания Б, Г и Д равносильны. Они означают одно и то же: множества дедов и множество волшебников имеют хотя бы один общий элемент (см. рис. 26).
Рис. 26
2) Если А истинно, то истинны и высказывания Б, Г и Д (для них Дед Мороз является подтверждающим примером). А вот В может быть как истинным, так и ложным.
3.12. Подсказка.Верите ли вы вДеда Мороза?
Решение.Парадокс связан с различным пониманием высказывания «Дед Мороз – волшебник».
Первый вариант: существование Деда Мороза считается заранее известным, а в Б утверждается лишь, что он является волшебником. Тогда если верно В, то верно и Б, а если верно Б, то верно и А. В таком случае, действительно, если верно В, то верно и А, никакого контрпримера и противоречия здесь нет: раз мы договорились верить в существование Деда Мороза, то множество дедов не может быть пустым.
Второй вариант: заранее ничего не известно; в Б утверждается, что существует Дед Мороз, являющийся волшебником. Тогда если Б верно, то и А верно. Но утверждать, что если верно В, то верно и Б, нельзя (контрпримером является ситуация, когда множество дедов пусто), поэтому вывод «если верно В, то верно и А» делать тоже нельзя.
3.13. Обсуждение.Что останется, если убрать театрализацию? Утверждение «Если это утверждение истинно, то Дед Мороз существует». Истинно ли оно? Если да, то Дед Мороз существует. Но именно это в нем и сказано, то есть оно истинно. А раз оно истинно, то Дед Мороз существует.
Ответ.Проблема в том же месте, что и в задачах 1.4и 1.10первого занятия: классическая логика избегает утверждений, связанных с истинностью их самих: их нельзя считать ни истинными, ни ложными.
4.7. Пригласят.
Комментарий.Изобразим ситуацию с помощью кругов Эйлера (см. рис. 27). Начертим два пересекающихся круга. В первый круг пригласим тех, кто хорошо поет, во второй – всех, кто хорошо танцует. В ансамбль пригласят тех, кто оказался хотя бы в одном из кругов (на рисунке эта область выделена серым), в том числе и Наташу, находящуюся в пересечении кругов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу