Инесса Раскина - Логика для всех. От пиратов до мудрецов

Здесь есть возможность читать онлайн «Инесса Раскина - Логика для всех. От пиратов до мудрецов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент МЦНМО, Жанр: Прочая детская литература, Математика, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логика для всех. От пиратов до мудрецов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика для всех. От пиратов до мудрецов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Четырнадцатая книжка серии «Школьные математические кружки» посвящена логическим задачам и является продолжением ранее вышедшей книжки И. В. Раскиной и Д. Э. Шноля «Логические задачи» (выпуск 11).
В книжку вошли разработки десяти занятий математического кружка с примерами задач различного уровня сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Приведен также большой список дополнительных задач. Ко всем задачам приведены ответы и подробные решения или указания к решениям.
Особенностью книжки является наличие игровых сценариев к отдельным задачам и целому занятию, реализация которых поможет лучшему освоению материала.
Для удобства использования заключительная часть книжки сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям логики.

Логика для всех. От пиратов до мудрецов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика для всех. От пиратов до мудрецов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3), 4) Для получения отрицания достаточно заменить «можно» на «нельзя» или «невозможно». В пункте 3 верно утверждение. Например, можно сторону 20 разделить на 4 равных части, а сторону 15 – на 5 равных частей и провести через точки деления прямые, параллельные сторонам. В пункте 4 верно отрицание: площадь исходного квадрата нечетна, а предполагаемых частей – четна.

5) Пусть в школе n учеников. Каждый может иметь от 0 до n – 1 друга – всего n вариантов. Но все эти варианты одновременно реализоваться не могут: если у кого-то n – 1 друг (т. е. он дружит со всеми остальными учениками), то никто другой не может вообще не иметь друзей. Поэтому вариантов меньше, чем учеников, и какой-то вариант соответствует хотя бы двум ученикам.

6) Для формулировки отрицания убрать «не» недостаточно. Если уточнить: «Через любое отверстие…», то ясно, что это общее высказывание, к которому отрицание строится так: «В листке из школьной тетради можно прорезать такое отверстие, через которое может пролезть человек». С такими высказываниями мы еще встретимся на втором занятии. Как ни странно, верно именно отрицание. На рис. 21 показано, как вырезать подходящее отверстие. Чем чаще разрезы, тем более длинная и узкая «змейка» будет его ограничивать.

Рис 21 Занятие 2 291 Да могут Если все грибы съедобны 2 Да могут - фото 43

Рис. 21

Занятие 2

2.9.1) Да, могут. Если все грибы съедобны. 2) Да, могут. Если в корзине есть и съедобные, и несъедобные грибы. 3) Да, могут. Если съедобных грибов вообще нет.

2.10.Нет, не является. Эти высказывания вполне могут выполняться одновременно.

2.11.Иллюстрации изображены на рисунке 22. Одинаковый смысл имеют третье и четвертое высказывания.

2.12.Денис не прав. Он путает высказывания «У всех великих людей плохой почерк» и «Все люди с плохим почерком– великие» (см. рис. 23).

2.13.Правду сказали все трое.

Комментарий.«Хотя бы один» означает «Ровно один или больше одного». В данном случае у Зайца «хотя бы один» означает «ровно один», у Волка – «двое», у Лисы – «все трое».

2.14.«Некоторые врачи имеют недостаточный опыт. Каждый врач хоть когда-нибудь ставил неправильный диагноз. Некоторые врачи опаздывают на работу. Некоторые пациенты недовольны лечением. Некоторые пациенты жалуются на бытовые условия. Никто не выздоравливает за один день».

Рис 22 Рис 23 215Рыцарь не может сказать Все мы лжецы поэтому первый - фото 44

Рис. 22

Рис 23 215Рыцарь не может сказать Все мы лжецы поэтому первый лжец - фото 45

Рис. 23

2.15.Рыцарь не может сказать «Все мы лжецы», поэтому первый – лжец. Второй сказал правду: «Не все мы лжецы», поэтому он – рыцарь. В комнате больше трех человек (так как первый солгал), но не больше четырех (так как второй сказал правду), то есть ровно четыре. Поэтому третий солгал, и лжецов среди них меньше трех. А двух лжецов мы уже знаем – это первый и третий.

Ответ.Всего в комнате четверо. Лжецов из них двое: первый и третий.

2.16.Заведем на каждого человека досье:

Если у человека есть телевизор, будем писать Т, если нет— T.

Если человек является маляром, будем писать М, если нет— М.

Если человек каждый день купается в бассейне, будем писать Б, если нет— Б.

Например, про человека, не являющегося маляром, имеющего телевизор и каждый день купающегося в бассейне, напишем Т МБ. По этим трем признакам все люди делятся на 8 групп:

1) ТМБ; 2) ТМ Б; 3) Т МБ; 4) Т МБ;

5) TМБ; 6) TМ Б; 7) TМБ; 8) TМБ.

Условие «Среди людей, имеющих телевизоры, не все являются малярами» означает, что хотя бы в одной из двух групп, третьей и четвертой, есть хотя бы один человек. Условие «Люди, каждый день купающиеся в бассейне, но не являющиеся малярами, не имеют телевизоров» означает, что третья группа людей пуста. Значит, в четвертой группе кто-то есть. И эти люди (или человек) владеют телевизорами, но не каждый день купаются в бассейне.

Рис 24 Этому решению можно придать более наглядный вид рис 24 Вместо - фото 46

Рис. 24

Этому решению можно придать более наглядный вид (рис. 24). Вместо таинственных трехбуквенных кодов нарисуем три круга. В один поместим всех владельцев телевизоров, в другой – маляров, в третий – ежедневно посещающих бассейн. Людей, удовлетворяющих всем трем условиям, попросим разместиться на пересечении всех трех кругов, помеченном цифрой 1. Такие люди относятся к первой группе ТМБ. Люди из других групп тоже окажутся на территориях с прежними номерами. Восьмой группе предоставим территорию за пределами всех трех кругов. Дальнейшие рассуждения ничем не отличаются от предыдущей версии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика для всех. От пиратов до мудрецов»

Представляем Вашему вниманию похожие книги на «Логика для всех. От пиратов до мудрецов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Людмила Раскина - Былое и думы собаки Диты
Людмила Раскина
Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика для всех. От пиратов до мудрецов»

Обсуждение, отзывы о книге «Логика для всех. От пиратов до мудрецов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x