4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4,
т. е. 262 144 способами.
Итак, из 9 наших брусков возможно составить не 1000, а больше четверти миллиона различных портретов! Задача весьма поучительна: она объясняет нам, почему так редко встречаются две одинаковые человеческие физиономии. Еще Владимир Мономах в своем «Поучении» изумлялся тому, что при огромном числе людей на свете каждый имеет свое особенное лицо. Но мы сейчас убедились, что если бы человеческое лицо характеризовалось всего 9 чертами, допускающими каждая всего 4 видоизменения, то могло бы существовать более 260 000 разных лиц. В действительности же характерных черт человеческого лица гораздо больше 9, и видоизменяться они могут больше чем 4 способами. Так, при 20 чертах, каждая из которых может применяться на 10 ладов, имеем различных лиц: 10х 10х 10х х 10… х 10… — итого 20 множителей, т. е.
100 000 000 000 000 000 000.
Это во много раз больше, чем людей во всем мире.
159. Рассуждая как и при решении предыдущей задачи, нетрудно сосчитать, что число различных замков равно
10 × 10 × 10 × 10 × 10 = 100 000.
Каждому из этих 100 000 замков соответствует особый ключ — единственный, которым можно его открыть. Существование ста тысяч различных замков и ключей, конечно, вполне обеспечивает безопасность владельца замка, так как у желающего вкрасться в помещение с помощью подобранного ключа есть только 1 шанс из 100 000 напасть на подходящий ключ.
Наш подсчет примерный: он сделан в предположении, что каждый стерженек замка может быть разделен надвое только 10 способами. В действительности же это можно сделать большим числом способов, а значит, различных вариантов замка существует значительно больше.
160. «Скромная награда» не могла быть выдана потому, что не только в Индии, но и во всем мире нет такого количества зерен, какое она предполагает. Само вычисление затребованной суммы зерен представляет собой нелегкую задачу. В самом деле: требуется сложить ряд чисел
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + и т. д.
Здесь выписаны только первые 8 чисел. Но остается еще 56. Чтобы узнать последнее 64-е число, нужно умножить число 2 само на себя 62 раза. В то время индусы не знали логарифмов, сокращающих подобные вычисления, поэтому они должны были выполнить умножение обычными приемами арифметики. Однако стоит лишь приступить к подсчетам, чтобы ощутить, насколько они утомительны. Правда, можно облегчить себе работу и сэкономить много времени, разбив наши 63 множителя на группы, по 7 двоек, тогда придется перемножить «только» 9 множителей, каждый из которых равен 128 (или же, если хотите, «всего» три множителя, каждый из которых равен произведению 128 х 128 х 128). Но слова «только» и «всего» недаром взяты здесь в кавычки, потому что работы все равно останется предостаточно. Ведь это лишь одно, последнее, 64-е слагаемое; а еще нужно вычислить все предыдущие 63 слагаемых, да кроме того эти числа сложить…
Для тех, кто изучал алгебру и знаком с логарифмами и прогрессиями, выполнение этого расчета — правда, приближенное, с точностью до 100 000-й доли результата — не составило бы никакого труда. Так как я не могу предполагать у читателей таких познаний из алгебры, а с другой стороны, не собираюсь засадить их за многочасовые выкладки, то укажу простой способ хотя бы грубо оценить истинные размеры «скромной награды» индусского мудреца.
Продолжив ряд
2, 4, 8,16, 32, 64 и т. д.
до его 10-го члена, получим 1024. Так как мы стремимся определить, как велико последнее слагаемое лишь приблизительно, то откинем в числе 1024 24 единицы, чтобы округлить результат до 1000. Если первые десять двоек при перемножении дали около 1000, то столько же дает и умножение следующих двоек, а также дальнейших групп из 10 двоек. Всех множителей-двоек у нас 63, т. е. шесть групп по 10 и еще седьмая группа из трех двоек. Значит, число зерен, причитающееся изобретателю за последнее, 64-е поле шахматной доски должно приблизительно равняться
1000 × 1000 × 1000 × 1000 × 1000 × 1000 × (2 × 2 × 2) = 8 000 000 000 000 000 000
Восемь квинтиллионов зерен — вот примерная величина последнего слагаемого! Чтобы вычислить (приблизительно) всю сумму, обратим внимание на поучительную особенность ряда
1,2, 4, 8,16, 32, 64, 128 и т. д.
Легко заметить, что каждое число в нем равно сумме всех предыдущих, увеличенной на 1. Например:
8 = (1 + 2 + 4) + 1; 16 = (1 + 2 + 4 + 8) + 1;
32 = (1 + 2 + 4 + 8 +16) +1.
Понятно, что и последнее, 64-е число этого ряда равно сумме 63 предыдущих плюс 1. Но мы уже знаем, что это последнее число приблизительно равно 8 квинтиллионам. Следовательно, сумма всех предыдущих чисел приблизительно равна 8 квинтиллионам, а общее число всех зерен, причитающихся изобретателю, приблизительно равно
Читать дальше
Конец ознакомительного отрывка
Купить книгу