Татьяна Пушкарёва - Математические основы живописи и архитектуры

Здесь есть возможность читать онлайн «Татьяна Пушкарёва - Математические основы живописи и архитектуры» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Детская образовательная литература, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математические основы живописи и архитектуры: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математические основы живописи и архитектуры»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В пособии рассмотрено применение математических фигур и расчетов в живописи и архитектуре, а также в теории цвета. Приведены примеры, способствующие усвоению теоретического материала. Предназначено для студентов классических и технических вузов художественного направления. Может быть полезно студентам при изучении курсов «Композиция» и «Дизайн», а также преподавателям художественных дисциплин.

Математические основы живописи и архитектуры — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математические основы живописи и архитектуры», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Т. П. Пушкарёва

Математические основы живописи и архитектуры

Введение

Согласно современным взглядам математика и изобразительное искусство – очень удаленные друг от друга дисциплины, поскольку первая из них – аналитическая, вторая – эмоциональная. Математика не играет очевидной роли в современном искусстве, однако у большинства художников она находится в центре внимания.

Своеобразным «скелетом живописи», ее конструктивной основой является рисунок. Он играет важнейшую роль в определении очертаний предметов, их форм, объемов и взаимного расположения в пространстве, т.е. именно в нем заложены геометрические законы живописи.

Своеобразие геометрии, выделяющее ее из других разделов математики, заключается в неразрывном, органическом соединении живого воображения со строгой логикой. По своей сущности геометрия – это пространственное воображение, пронизанное и организованное строгой логикой. В ней всегда присутствуют эти два неразрывно связанных элемента: наглядная картина и точная формулировка, строгий логический вывод.

Наглядность, воображение принадлежат больше искусству, строгая логика – привилегия математики.

Еще одним фундаментальным понятием математики, которое имеет прямое отношение к природе и искусству, является симметрия.

Художники разных эпох использовали симметричное построение картины. Симметричными были многие древние мозаики. Живописцы эпохи Возрождения часто строили свои композиции по законам симметрии. Такое построение позволяло достигнуть впечатления покоя, величественности, особой торжественности и значимости событий.

Бордюры в архитектурных и скульптурных произведениях, орнаменты в прикладном искусстве – все это примеры использования симметрии.

Иоганн Кеплер говорил, что геометрия владеет двумя сокровищами: теоремой Пифагора и золотым сечением.

Как следствие многочисленных применений золотого сечения в геометрии и искусстве в эпоху Возрождения появилась книга «Божественная пропорция», а сам термин был введен Леонардо да Винчи в XV веке. Пропорция золотого сечения лежит в основе многих творений Фидия, Тициана, Рафаэля и других.

В эпоху Возрождения золотое сечение было очень популярно среди художников, скульпторов и архитекторов. В большинстве живописных пейзажей линия горизонта делит полотно по высоте в отношении золотой пропорции, а при выборе размеров картин старались, чтобы отношение ширины к высоте тоже равнялось золотой пропорции.

Настоящее искусство имеет свою теорию. Иногда эту теорию можно выразить в терминах математики, так как она тесно связана практически со всеми разновидностями современного искусства и искусства древних времен.

§ 1. Математическое изобразительное искусство

В математическом изобразительном искусстве наиболее часто используют многогранники, тесселяции, ленты Мебиуса, невозможные фигуры, фракталы и искаженные перспективы. Отдельные работы могут включать в себя одновременно несколько перечисленных фигур и объектов.

Многогранник – это трехмерное тело, гранями которого являются многоугольники. Существует всего пять правильных многогранников, у которых все стороны являются правильными многоугольниками и все вершины одинаковы. Они известны как многоугольники Платона , или Платоновы тела (рис. 1).

Рис. 1. Платоновы тела: а – тетраэдр; б – куб; в – октаэдр; г – икосаэдр; д – додекаэдр

Существует 13 выпуклых многогранников, гранями которых являются один, два или три правильных многоугольника и у которых все вершины одинаковы. Они известны как тела Архимеда (рис. 2).

Рис. 2. Архимедовы тела: а – усеченный тетраэдр; б – кубооктаэдр; в – усеченный куб; г – усеченный икосаэдр; д – усеченный додекаэдр; е – усеченный кубооктаэдр; ж – усеченный октаэдр; з – усеченный икосододекаэдр; и – ромбокубооктаэдр; к – дважды усеченный куб (курносый куб); л – икосододекаэдр; м – ромбоикосододекаэдр; н – дважды усеченный додекаэдр (курносый додекаэдр)

Кроме этого, существует бесконечное множество призм и антипризм с гранями в виде правильных многоугольников. Антипризма – полуправильный многогранник, у которого две параллельные грани (основания) – равные между собой правильные n -угольники, а остальные 2 n граней (боковые грани) – правильные треугольники (рис. 3).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математические основы живописи и архитектуры»

Представляем Вашему вниманию похожие книги на «Математические основы живописи и архитектуры» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Математические основы живописи и архитектуры»

Обсуждение, отзывы о книге «Математические основы живописи и архитектуры» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x