2
Логика получала развитие и в Средние века, но схоластика исказила аристотелевское оригинальное учение, адаптировав его для обоснования религиозной догматики.
Успехи логической науки в Новое время характеризуются теорией индукции, разработанной английским философом Ф. Бэконом (1561–1626). Ученый критиковал искаженную схоластикой дедуктивную логику Аристотеля и предложил индукцию как метод научных открытий. Основные положения индукции Бэкон изложил в сочинении «Новый Органон».
3
Методы индукции Бэкона систематизировал английский философ и логик Дж. С. Милль (1806–1873). Дедуктивную логику Аристотеля и индуктивную логику Бэкона – Милля называют формальной, как возникшую и получившую развитие науку о формах мышления. Другое ее название – традиционная, или аристотелевская, логика.
Последующий прогресс в развитии логики связан с такими выдающимися мыслителями, как Р. Декарт, Г. Лейбниц, И. Кант и др. Французский философ Р. Декарт (1596–1650) критиковал средневековую схоластику, а также развил идеи дедуктивной логики, сформулировал правила научного исследования в своем сочинении «Правила для руководства ума».
4
Неоценимый вклад в логическую науку внесли немецкий философ Г. Лейбниц (1646–1716), который сформулировал закон достаточного основания и выдвинул идею математической логики; немецкий философ И. Кант (1724–1804) и многие другие западноевропейские ученые.
5
Русские философы и ученые имеют не менее значительные заслуги в развитии науки логики. В их числе такие светила российской науки, как М. В. Ломоносов (1711–1765), А. Н. Радищев (1749–1802), Н. Г. Чернышевский (1828–1889), М. И. Каринский (1840–1917), Л. В. Рутковский (1859–1920), С. И. Поварнин (1870–1952).
Методы исчисления, разработанные в математике во второй половине XIX в., были широко внедрены в логику в трудах Д. Буля, Б. Рассела, Г. Фреге, Ч. Пирса и других математиков и логиков. Анализ дедуктивно проводимых рассуждений с помощью методов исчисления получил название математической, или символической, логики.
6
Символическая логика представляет собой область логических исследований, включающую множество так называемых «логик» (например, логика высказываний, логика предикатов, вероятностная логика и т. д.).
Широкое распространение логики в России началось в XIX в., когда она стала обязательной учебной дисциплиной в высших учебных заведениях. Расцвет логики приходится на вторую половину XIX – начало XX в. и связан с именами ученых В. Н. Карпова, М. И. Владиславлева, М. И. Каринского, Н. Я. Грота, Л. В. Рутковского, А. И. Введенского, П. С. Порецкого, С. И. Поварнина и др.
7
Золотой период для логики продлился в России недолго. В советской России в послереволюционный период формальная логика была объявлена буржуазной наукой. Но в 1947/1948 учебном году логику восстановили в учебных программах, причем предпочтение отдавалось логике диалектической.
Математическая логика существовала в рамках математики, избежав идеологического давления. На сегодняшний день математическая логика отошла от традиционной и не получила широкого распространения в среде гуманитариев в силу ее относительной сложности и отсутствия необходимости придавать естественным языковым выражениям символический вид.
4. Классическая логика высказывании и предикатов
1
Под именем понимается выражение языка, обозначающее отдельный предмет, совокупность сходных предметов, свойства, отношения. Выражение языка становится именем, если оно выступает в роли подлежащего или именной части сказуемого в простом предложении: «S есть Р» (S – подлежащее, Р – сказуемое). Например, высказывание «роза – это цветок» своими составляющими имеет имена «роза» и «цветок».
2
Высказывание – грамматически правильное предложение, которое может быть истинным или ложным. В логике само понятие высказывания – ключевое, но не допускает универсального определения для разных ее разделов. Но любое высказывание описывает некоторую ситуацию и может быть истинным или ложным.
Высказывание истинно, если соответствует реальной ситуации, и ложно, если не соответствует ей. «Истина» и «ложь» представляют собой истинные значения высказывания.
3
Вспомогательные слова «и», «либо, либо», «если, то» называют логическими связками. Сложные высказывания можно строить с помощью логических связок. Так, из высказываний «светит солнце» и «идет дождь» можно образовать сложные высказывания типа «если светит солнце, то идет дождь», «светит солнце и идет дождь» и т. п.
Читать дальше
Конец ознакомительного отрывка
Купить книгу