Johann Beckmann - A History of Inventions, Discoveries, and Origins, Volume I (of 2)

Здесь есть возможность читать онлайн «Johann Beckmann - A History of Inventions, Discoveries, and Origins, Volume I (of 2)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: foreign_antique, foreign_prose, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

A History of Inventions, Discoveries, and Origins, Volume I (of 2): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «A History of Inventions, Discoveries, and Origins, Volume I (of 2)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A History of Inventions, Discoveries, and Origins, Volume I (of 2) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «A History of Inventions, Discoveries, and Origins, Volume I (of 2)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This effect presented itself perhaps accidentally to some chemist; but the discovery is not of great antiquity. Wecker, who compiled his book De Secretis from Porta, Cardan, and several old writers, and printed it for the first time in 1582, and gave a third edition in 1592, must have been unacquainted with it; else he certainly would not have omitted it in the fourteenth book, where he mentions all the methods of secret writing. Neither would it have been unnoticed by Caneparius, whose book De Atramentis was printed at Venice, for the first time, in 1619.

The first person who, as far as I have been able to learn, gave a receipt for preparing this ink, was Peter Borel, in Historiarum et Observationum Medico-physic. Centuriæ quatuor. In this work, which was printed for the first time in 1653, and a second time in 1657, at Paris, and of which there were several editions afterwards, the author calls it a magnetic water, which acts at a distance 264. After the occult qualities of the schoolmen were exploded, it was customary to ascribe phænomena, the causes of which were unknown, and particularly those the causes of which seemed to operate without any visible agency, to magnetic effluvia; as the tourmaline was at first considered to be a kind of magnet. Others concealed their ignorance under what they called sympathy, and in latter times attraction and electricity have been employed for the like purpose. Borel, who made it his business to collect new observations that were kept secret, learned the method of preparing this magnetic water from an ingenious apothecary of Montpelier, and in return taught him some other secrets. Otto Tachen, a German chemist 265, afterwards thought of the same experiment, which he explains much better, without the assistance of magnetism or sympathy. The receipt for making these liquids, under the name of sympathetic ink, I find first given by Le Mort 266, and that name has been still retained 267.

Another remarkable kind of sympathetic ink is that prepared from cobalt, the writing of which disappears in the cold, but appears again of a beautiful green colour, as often as one chooses, after being exposed to a moderate degree of heat.

The invention of this ink is generally ascribed to a Frenchman named Hellot. He was, indeed, the first person who, after trying experiments with it, made it publicly known, but he was not the inventor; and he himself acknowledges that a German artist of Stolberg first showed him a reddish salt, which, when exposed to heat, became blue, and which he assured him was made out of Schneeberg cobalt, with aqua regia 268. This account induced Hellot to prepare salts and ink from various minerals impregnated with cobalt; but A. Gesner proved, long after, that this ink is produced by cobalt only, and not by marcasite 269.

When Hellot’s experiments were made known in Germany, it was affirmed that Professor H. F. Teichmeyer, at Jena, had prepared the same ink six years before, and shown it to his scholars, in the course of his lectures, under the name of sympathetic ink 270. It appears, however, that it was invented, even before Teichmeyer, in the beginning of the last century by a German lady. This is confirmed by Pot, who says that the authoress of a book printed in 1705, which he quotes under the unintelligible title of D. J. W. in clave, had given a proper receipt for preparing the above-mentioned red salt, and the ink produced by it 271. If it be true that Theophrastus Paracelsus, by means of this invention, could represent a garden in winter, it must be undoubtedly older 272.

[In consequence of the progress of modern chemistry and the discovery of a vast number of new chemical compounds, sympathetic inks may be made in an almost endless number and variety. The principal may be classed in the following manner: – 1, such as when dried upon paper being invisible, on moistening with another liquid become again evident : of this kind there are a vast number; among which we may mention a solution of a soluble salt of lead, or bismuth, for writing, and a solution of sulphuretted hydrogen for washing over; the writing then appears black; or green vitriol for writing and prussiate of potash for washing over, when the writing becomes blue 273; 2, such as are rendered evident by being sifted over with some powder , as the milk with soot described above; 3, those which become visible by heat , such as characters in dilute sulphuric acid, lemon-juice, solutions of the nitrate and chloride of cobalt, and of chloride of copper; the two former become black or brown, the latter are rendered green, the colouring disappearing subsequently when allowed to cool in a moist place. Amusing pictures are sometimes made with these sympathetic inks, particularly those composed of cobalt; for if a landscape be drawn to represent winter, the vegetation being covered with a solution of cobalt, on holding the paper to the fire, all those portions covered with the solution appear of a bright green, and thus completely change the character of the scene.]

DIVING-BELL

The first divers learned their art by early and adventurous experience, in trying to continue under water as long as possible without breathing; and, indeed, it must be allowed that some of them carried it to very great perfection. This art, however, excites little surprise; for, like running, throwing, and other bodily dexterities, it requires only practice; but it is certain that those nations called by us uncultivated and savage excel in it the Europeans 274, who, through refinement and luxury, have become more delicate, and less fit for such laborious exercises.

In remote ages, divers were kept in ships to assist in raising anchors 275, and goods thrown overboard in times of danger 276; and, by the laws of the Rhodians, they were allowed a share of the wreck, proportioned to the depth to which they had gone in search of it 277. In war, they were often employed to destroy the works and ships of the enemy. When Alexander was besieging Tyre, divers swam off from the city, under water, to a great distance, and with long hooks tore to pieces the mole with which the besiegers were endeavouring to block up the harbour 278. The pearls of the Greek and Roman ladies were fished up by divers at the great hazard of their lives; and by the like means are procured at present those which are purchased as ornaments by our fair.

I do not know whether observations have ever been collected respecting the time that divers can continue under water. Anatomists once believed that persons in whom the oval opening of the heart ( foramen ovale ) was not closed up, could live longer than others without breathing, and could therefore be expert divers. Haller 279, however, and others, have controverted this opinion; as people who had that opening have been soon suffocated, and as animals which have it not can live a long time under water: besides, when that opening is perceptible in grown persons, it is so small as not to be sufficient for that purpose, especially as the ductus arteriosus is scarcely ever found open.

The divers of Astracan, employed in the fishery there, can remain only seven minutes under water 280. The divers in Holland seem to have been more expert. An observer, during the time they were under water, was obliged to breathe at least ten times 281. Those who collect pearl-shells in the East Indies can remain under water a quarter of an hour, though some are of opinion that it is possible to continue longer; and Mersenne mentions a diver, named John Barrinus, who could dive under water for six hours 282. How far this may be true I shall leave others to judge.

[The various statements regarding the length of time during which divers can remain under water, unaided by apparatus for renewing the supply of atmospheric air, are not borne out by the experience of those who have carefully observed and noted these phænomena. The average time which human beings can remain in the water under these conditions, is one and a half or two minutes 283; extraordinary cases are attested where five and even six minutes have elapsed, but these are exceedingly rare instances and far beyond the average; no instance of a longer time than this is recorded on credible authority. Some interesting remarks on this point were made not long since by a member of the Asiatic Society to Dr. Faraday. The lungs in their natural state are charged with a large quantity of impure air; this being a portion of the carbonic acid gas which is formed during respiration, but which, after each expiration, remains lodged in the involved passages of the pulmonary tubes. By breathing hard for a short time, as a person does after violent exercise, this impure air is expelled, and its place is supplied by pure atmospheric air, by which a person will be enabled to hold his breath much longer than without such precaution. Dr. Faraday states, that although he could only hold his breath, after breathing in the ordinary way, for about three-fourths of a minute, and that with great difficulty, he felt no inconvenience, after making eight or ten forced respirations to clear the lungs, until the mouth and nostrils had been closed more than a minute and a half; and that he continued to hold breath to the end of the second minute. A knowledge of this fact may enable a diver to remain under water at least twice as long as he otherwise could do. It is suggested that possibly the exertion of swimming may have the effect of occasioning the lungs to be cleared, so that persons accustomed to diving may unconsciously avail themselves of this preparatory measure.]

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «A History of Inventions, Discoveries, and Origins, Volume I (of 2)»

Представляем Вашему вниманию похожие книги на «A History of Inventions, Discoveries, and Origins, Volume I (of 2)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «A History of Inventions, Discoveries, and Origins, Volume I (of 2)»

Обсуждение, отзывы о книге «A History of Inventions, Discoveries, and Origins, Volume I (of 2)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x