Крупным организмам требуется более интенсивная пролиферация клеток — сначала для достижения размера, а потом для его поддержания. Быстрая же пролиферация, в свою очередь, увеличивает риск развития рака. Но если сравнивать между собой разные виды, эта закономерность нарушается. У слонов и других организмов с длинным жизненным циклом есть свои эволюционные козыри в рукавах, позволяющие им быть одновременно большими и невосприимчивыми к раку.
СЛОНЫ МОГУТ ПОХВАСТАТЬСЯ ДОПОЛНИТЕЛЬНЫМИ КОПИЯМИ ГЕНА ПОДАВЛЕНИЯ ОПУХОЛИ TP53, ЧТО СПОСОБСТВУЕТ НИЗКОМУ УРОВНЮ ЗАБОЛЕВАЕМОСТИ РАКОМ (У НАС ТАКИХ КОПИЙ ВСЕГО ДВЕ — ПО ОДНОЙ ОТ ОТЦА И ОТ МАТЕРИ).
Как мы с вами уже видели, ген TP53 помогает контролировать пролиферацию клеток и активирует запрограммированную гибель клеток, повреждения которых уже не подлежат исправлению. Он выступает в роли детектора недобросовестности нашего генома, который отслеживает ненормальное поведение и должным образом на него реагирует.
TP53 — один из генов-супрессоров опухоли, причем один из самых важных: он помогает поддерживать здоровое состояние клеток за счет обнаружения различных проблем, таких как повреждения ДНК. Найдя их, он останавливает клеточный цикл до тех пор, пока ошибка не будет исправлена. А если проблему невозможно решить, ген TP53 начинает посылать клетке сигналы, провоцирующие ее апоптоз. С дополнительными копиями гена TP53 слоны получают дополнительную дозу всех функций подавления рака, их организм становится еще более чувствительным к повреждениям ДНК, что повышает вероятность успешного уничтожения таких бракованных клеток.
Карло Малей, специализирующийся на раке эволюционный биолог (по совместительству мой коллега и муж), вместе со своей студенткой Алеей Коулин обнаружил эти дополнительные копии TP53 в геноме слона. Они выдвинули предположение, что копии могут играть важную роль в низком уровне заболеваемости раком у этих животных. Полученные Малеем результаты привлекли внимание Джошуа Шиффмана, детского онколога, который после смерти своей собаки решил заняться изучением связи между раком у собак и у людей. В ходе своих экспериментов Шиффман облучал клетки и измерял уровень апоптоза — он хотел разобраться в механизмах развития синдрома Ли — Фраумени, о котором я уже упоминала ранее в этой главе. Дети с этим синдромом рождаются только с рабочей одной копией гена-супрессора опухоли TP53, в то время как обычно у человека их две (по одной от отца и от матери). У таких детей почти стопроцентная вероятность заболеть раком в течение жизни, и у многих из них развивается несколько разных видов заболевания, причем порой еще в раннем детстве. Эта жестокая болезнь носит наследственный характер: порой от нее страдают целые семьи.
Шиффман обнаружил, что при облучении клеток крови людей с синдромом Ли — Фраумени они реагировали на радиацию необычным образом. Вместо того чтобы погибнуть, как обычные клетки в случае повреждения своей ДНК, эти продолжали жить. В конечном счете это делает организм более восприимчивым к раку. При синдроме Ли — Фраумени клетки с сильными повреждениями ДНК продолжают жить из-за неисправной копии гена TP53, и эти мутировавшие клетки могут угрожать жизни пациента, увеличивая риск развития рака.
Малей и Шиффман решили объединиться и вместе изучить реакцию на повреждения ДНК в клетках слонов, чтобы понять, помогают ли эти многочисленные копии гена TP53 защищать слонов от потенциально раковых клеток. Они заручились помощью Лизы Абеглен, специалиста по молекулярной патологии и специалиста по биологии рака из Института онкологии Хантсмана. Облучая культивированные клетки из слоновьей крови, Абеглен вместе с другими членами исследовательской группы обнаружила запредельно высокий уровень апоптоза: в ответ на радиацию клетки слонов массово самоуничтожались. Таким образом, они совершают самоубийство при малейшем намеке на проблему, тем самым крайне эффективно защищая организм от мутировавших клеток, которые могли бы привести к развитию рака.
Когда ученые культивируют клетки слона в чашке Петри, а затем подвергают их воздействию радиации, это приводит к активации гена TP53 с последующим образованием белка p53, который, в свою очередь, провоцирует смерть у клеток с высоким уровнем мутаций. Возвращаясь к нашей аналогии с удержанием равновесия на натянутом канате: производство этого генетического продукта, белка p53, клонит слона вправо, так как контроль клеточного поведения усиливается. Когда ген TP53 активируется (например, вследствие повреждений в результате воздействия радиации), это приводит к синтезу p53, которым наполняется ведро справа, Это помогает слону справляться с повышенным риском развития рака, возникающим при воздействии различных внешних факторов, таких как радиация.
Читать дальше
Конец ознакомительного отрывка
Купить книгу