Y = 2;
Y = 4;
nо (нет)
Важно заметить, что в последней версии, в отличие от предыдущей, отсечения затрагивают не только процедурное поведение, но изменяют также и декларативный смысл программы.
Более точный смысл механизма отсечений можно сформулировать следующим образом:
Назовем "целью-родителем" ту цель, которая сопоставилась с головой предложения, содержащего отсечение. Когда в качестве цели встречается отсечение, такая цель сразу же считается успешной и при этом заставляет систему принять те альтернативы, которые были выбраны с момента активизации цели-родителя до момента, когда встретилось отсечение. Все оставшиеся в этом промежутке (от цели-родителя до отсечения) альтернативы не рассматриваются.
Чтобы прояснить смысл этого определения, рассмотрим предложение вида
Н :- В1, В2, ..., Вm, !, ..., Вn.
Будем считать, что это предложение активизировалось, когда некоторая цель G сопоставилась с Н. Тогда G является целью-родителем. В момент, когда встретилось отсечение, успех уже наступил в целях В1, ..., Вm. При выполнении отсечения это (текущее) решение В1, ..., Вm "замораживается" и все возможные оставшиеся альтернативы больше не рассматриваются. Далее, цель G связывается теперь с этим предложением: любая попытка сопоставить G с головой какого-либо другого предложения пресекается.
Применим эти правила к следующему примеру:
С :- Р, Q, R, !, S, Т, U.
С :- V.
А :- В, С, D.
?- А.
Здесь А, В, С, D, Р и т.д. имеют синтаксис термов. Отсечение повлияет на вычисление цели С следующим образом. Перебор будет возможен в списке целей Р, Q, R; однако, как только точка отсечения будет достигнута, все альтернативные решения для этого списка изымаются из рассмотрения. Альтернативное предложение, входящее в С:
С :- V.
также не будет учитываться. Тем не менее, перебор будет возможен в списке целей S, Т, U. "Цель-родитель" предложения, содержащего отсечения, -это цель С в предложении
А :- В, С, D.
Поэтому отсечение повлияет только на цель С. С другой стороны, оно будет "невидимо" из цели А. Таким образом, автоматический перебор все равно будет происходить в списке целей В, С, D, вне зависимости от наличия отсечения в предложении, которое используется для достижения С.
Назад | Содержание | Вперёд
Назад | Содержание | Вперёд
5. 2. Примеры, использующие отсечение
5. 2. 1. Вычисление максимума
Процедуру нахождения наибольшего из двух чисел можно запрограммировать в виде отношения
mах( X, Y, Мах)
где Мах = X, если Х больше или равен Y, и Мах есть Y, если Х меньше Y. Это соответствует двум таким предложениям:
mах( X, Y, X) :- Х >= Y.
max( X, Y, Y) :- Х < Y.
Эти правила являются взаимно исключающими. Если выполняется первое, второе обязательно потерпит неудачу. Если неудачу терпит первое, второе обязательно должно выполниться. Поэтому возможна более экономная формулировка, использующая понятие "иначе":
если Х >= Y, то Мах = X,
иначе Мах = Y.
На Прологе это записывается при помощи отсечения:
mах( X, Y, X) :- Х >= Y, !.
mах( X, Y, Y).
5. 2. 2. Процедура проверки принадлежности списку, дающая единственное решение
Для того, чтобы узнать, принадлежит ли Х списку L, мы пользовались отношением
принадлежит( X, L)
Программа была следующей:
принадлежит( X, [X | L] ).
принадлежит X, [Y | L] ) :- принадлежит( X, L).
Эта программа дает "недетерминированный" ответ: если Х встречается в списке несколько раз, то будет найдено каждое его вхождение. Исправить этот недостаток не трудно: нужно только предотвратить дальнейший перебор сразу же после того, как будет найден первый X, а это произойдет, как только в первом предложении наступит успех. Измененная программа выглядит так:
принадлежит( X, [X | L] ) :- !.
принадлежит( X, [Y | L] ) :- принадлежит( X, L).
Эта программа породит только одно решение. Например:
?- принадлежит( X, [а, b, с] ).
Х = а;
nо (нет)
5. 2. 3. Добавление элемента к списку, если он в нем отсутствует (добавление без дублирования)
Часто требуется добавлять элемент Х в список L только в том случае, когда в списке еще нет такого элемента. Если же Х уже есть в L, тогда L необходимо оставить без изменения, поскольку нам не нужны лишние дубликаты X. Отношение добавитьимеет три аргумента:
Читать дальше