Feynmann - Feynmann 5

Здесь есть возможность читать онлайн «Feynmann - Feynmann 5» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 5: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 5»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 5 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 5», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ранее Получается новая теорема Это нас должно заинтересовать потому что у - фото 142

ранее. Получается новая теорема:

Это нас должно заинтересовать потому что у нас уже есть одна теорема о - фото 143

Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Та­кой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к СXС утверждает, что

(3.40)

Мы заключаем что интеграл в правой части должен обращаться в нуль и что это - фото 144

Мы заключаем, что интеграл в правой части должен обращать­ся в нуль и что это должно быть справедливо для любого векторного по­ля С, каким бы оно ни было.

(3.41)

Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подын­тегральное выражение должно быть равно нулю. Получается, что

Тот же результат был выведен с помощью векторной алгебры в гл 2 7 Теперь - фото 145

Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прила­жено одно к другому.

§ 8. Итоги

Подытожим теперь все, что мы узнали о векторном исчисле­нии. Вот самые существенные моменты гл. 2 и 3.

1. Операторы д/дх, д/ду и д / dz можно рассматривать как три составляющих векторного оператора С ; формулы, сле­дующие из векторной алгебры, остаются правильными, если этот оператор считать вектором

2 Разность значений скалярного поля в двух точках равна криволинейному - фото 146

2 Разность значений скалярного поля в двух точках равна криволинейному - фото 147

2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей гра­диента этого скаляра вдоль любой кривой, соединяющей пер­вую точку со второй:

(3.42)

Поверхностный интеграл от нормальной составляющей произвольного вектора по - фото 148Поверхностный интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности равен интег­ралу от дивергенции вектора по объему, лежащему внутри этой поверхности:

(3.43)

4 Криволинейный интеграл от касательной составляющей произвольного вектора по - фото 149

4. Криволинейный интеграл от касательной составляющей произвольного вектора по замкнутому контуру равен поверх­ностному интегралу от нормальной составляющей ротора этого вектора по произвольной поверхности, ограниченной этим кон­туром

(3.44)

От редактора. Начиная изучать уравнения Максвелла, обратите вни­мание, что в этих лекциях используется рационализированная система единиц, в которой уравнения Максвелла не содержат коэффициентов.

Более привычно вместо e 0 писать e 0 /4 p ; тогда коэффициент 4 p исче­зает из знаменателя закона Кулона (4.9), но появляется в правых частях уравнений (4.1) и (4.3). [Улучшение системы единиц всегда похоже на Тришкин кафтан.]

Кроме того, вместо квадрата скорости света вводят новую постоян­ную m 0 = e 0 / c 2 , называют ее (довольно неудачно) магнитной проницаемос­тью пустоты (так же, как e 0 называют диэлектрической проницаемостью пустоты) и обозначают e 0 E = D , B = m 0 H .

Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!

*Конечно, последующие выкладки в равной мере относятся и к лю­бому прямоугольному параллелепипеду.

Глава 4

ЭЛЕКТРОСТАТИКА

§1. Статика

§2.Закон Кулона; наложение сил

§З. Электрический потенциал

§4. E=- φ

§5.Поток поля Е

§6.Закон Гаусса; дивергенция поля Е

§7 .Поле заряженного шара

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 5»

Представляем Вашему вниманию похожие книги на «Feynmann 5» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 5»

Обсуждение, отзывы о книге «Feynmann 5» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x