Feynmann - Feynmann 1

Здесь есть возможность читать онлайн «Feynmann - Feynmann 1» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 1 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Радиус атомов примерно равен 1 или 2 на 10 -8 см. Величина 10 -8 см это ангстрем, так что радиус атома равен 1 или 2 ангстре­мам (А). А вот другой способ запомнить размер атома: если яблоко увеличить до размеров Земли, то атомы в яблоке сами станут размером с яблоко.

Представьте теперь себе эту каплю воды с ее частичками, которые приплясывают, играют в пятнашки и льнут одна к дру­гой. Вода сохраняет свой объем и не распадается на части имен­но из-за взаимного притяжения молекул. Даже катясь по стек­лу, капля не растекается, опять-таки из-за притяжения. И все вещества не улетучиваются по той же причине. Движение ча­стиц в теле мы воспринимаем как теплоту; чем выше темпера­тура, тем сильнее движение. При нагреве воды толчея среди частиц усиливается, промежутки между ними растут, и насту­пает миг, когда притяжения между молекулами уже не хватает, чтобы удержать их вместе, вот тогда они и улетучиваются, удаляются друг от друга. Так получают водяной пар: при по­вышении температуры усиливается движение и частицы воспа­ряют.

На фиг. 1.2 показан пар.

Фиг 12 Пар под микроскопом Рисунок этот плох в одном при выбранном нами - фото 2

Фиг. 1.2. Пар под микроскопом.

Рисунок этот плох в одном — при выбранном нами увеличении на комнату придется всего несколько молекул, поэтому сомнительно, чтобы целых 2 1/ 2мо­лекулы оказались на таком маленьком рисунке. На такой площадке скорее всего не окажется ни одной частицы. Но ведь надо что-то нарисовать, чтоб рисунок не был совсем пустым. Глядя на пар, легче увидеть характерные черты молекул воды. Для простоты на рисунке угол между атомами водорода взят 120°. На самом же деле он равен 105°3ў , а промежуток между центрами атомов кислорода и водорода равен 0,957 Е. Как видите, мы довольно хорошо представляем себе эту молекулу.

Давайте рассмотрим некоторые свойства водяного пара или других газов. Разрозненные молекулы пара то и дело ударяются о стенки сосуда. Представьте себе комнату, в которой множе­ство теннисных мячей (порядка сотни) беспорядочно и беспре­рывно прыгают повсюду. Под градом ударов стенки расходятся (так что их надо придерживать). Эту неумолкаемую дробь уда­ров атомов наши грубые органы чувств (их-то чувствительность не возросла в миллиард раз) воспринимают как постоянный напор. Чтобы сдержать газ в его пределах, к нему нужно при­ложить давление. На фиг. 1.3 показан обычный сосуд с газом (без него не обходится ни один учебник) — цилиндр с поршнем.

Фиг 13 Цилиндр с поршнем Молекулы для простоты изображены теннисными - фото 3

Фиг. 1.3. Цилиндр с поршнем.

Молекулы для простоты изображены теннисными мячиками, или точечками, потому что форма их не имеет значения. Они движутся беспорядочно и непрерывно. Множество молекул бес­прерывно колотит о поршень. Их непрекращаемые удары вытол­кнут его из цилиндра, если не приложить к поршню некоторую силу — давление (сила, собственно,— это давление, умножен­ное на площадь). Ясно, что сила пропорциональна площади поршня, потому что если увеличить его площадь, сохранив то же количество молекул в каждом кубическом сантиметре, то и число ударов о поршень возрастет во столько же раз, во сколь­ко расширилась площадь.

А если в сосуде число молекул удвоится (и соответственно возрастет их плотность), а скорости их (и соответственно темпе­ратура) останутся прежними? Тогда довольно точно удвоится и число ударов, а так как каждый из них столь же «энергичен», как и раньше, то выйдет, что давление пропорционально плот­ности. Если принять во внимание истинный характер сил взаи­модействия атомов, то следует ожидать и небольшого спада дав­ления из-за увеличения притяжения между атомами и легкого роста давления из-за увеличения доли общего объема, занятого самими атомами. И все же в хорошем приближении, когда ато­мов сравнительно немного (т. е. при невысоких давлениях), давление пропорционально плотности.

Легко понять и нечто другое. Если повысить температуру газа (скорость атомов), не меняя его плотности, что произойдет с давлением? Двигаясь быстрей, атомы начнут бить по поршню сильней; к тому же удары посыплются чаще — и давление воз­растет. Вы видите, до чего просты идеи атомной теории.

А теперь рассмотрим другое явление. Пускай поршень мед­ленно двинулся вперед, заставляя атомы тесниться в меньшем объеме. Что бывает, когда атом ударяет по ползущему поршню? Ясно, что после удара его скорость повышается. Можете это проверить, играя в пинг-понг: после удара ракеткой шарик отлетает от ракетки быстрей, чем подлетал к ней. (Частный пример: неподвижный атом после удара поршня приобретает скорость.) Стало быть, атомы, отлетев от поршня, становятся «горячее», чем были до толчка. Поэтому все атомы в сосуде на­берут скорость. Это означает, что при медленном сжатии газа его температура растет. Когда медленно сжимаешь газ, его температура повышается, а когда медленно расширяешь, тем­пература падает.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 1»

Представляем Вашему вниманию похожие книги на «Feynmann 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 1»

Обсуждение, отзывы о книге «Feynmann 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x