Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения

Здесь есть возможность читать онлайн «Кэти О'Нил - Убийственные большие данные. Как математика превратилась в оружие массового поражения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2018, ISBN: 2018, Издательство: Литагент АСТ, Жанр: sociology_book, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Убийственные большие данные. Как математика превратилась в оружие массового поражения
  • Автор:
  • Издательство:
    Литагент АСТ
  • Жанр:
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-17-982583-8
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Убийственные большие данные. Как математика превратилась в оружие массового поражения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Убийственные большие данные. Как математика превратилась в оружие массового поражения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические алгоритмы с каждым днем все сильнее подчиняют себе нашу жизнь. Более того: по мнению автора книги, профессора математики и финансового аналитика, эти алгоритмы уже превратились в опасное оружие в руках государства и корпораций – и это оружие нацелено в первую очередь на самые бедные и незащищенные слои населения. Новейшие математические приложения, с помощью которых банки и страховые компании отслеживают каждый наш шаг, претендуют на полную объективность, однако на самом деле в них заложены те же предрассудки и предубеждения, что свойственны их создателям – далеким от совершенства человеческим существам. При этом скрытые принципы работы математических моделей и их тайные критерии охраняются как величайшая коммерческая тайна, а их вердикты, подчас очевидно ошибочные и явно вредные, считаются окончательными и обжалованию не подлежат. Добро пожаловать в прекрасный новый мир – мир убийственных Больших данных!

Убийственные большие данные. Как математика превратилась в оружие массового поражения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Убийственные большие данные. Как математика превратилась в оружие массового поражения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бодро нужно было что-то предпринять. Поэтому, как только Уильямс вышел на поле во второй игре, игроки «Индейцев» начали быстро перемещаться. Бодро, шорт-стоп, перебежал на место, где обычно стоял второй бейсмен, а второй бейсмен отошел на правый аутфилд, третий бейсмен сдвинулся влево, к месту шорт-стопа. Было очевидно, что Бодро (возможно, эта идея была продиктована отчаянием) полностью изменил расположение своей защиты, чтобы превратить хиты Теда Уильямса в ауты.

Другими словами, Бодро мыслил как специалист по анализу данных. Он проанализировал предварительные данные, по большей части на основе наблюдений: обычно Тед Уильямс делал подачу в правый аутфилд. Затем он предпринял меры – и они сработали. Игроки стали ловить больше мощных лайнеров Уильямса (хотя они по-прежнему ничего не могли сделать с хоум-ранами, пролетающими над их головами).

Если вы сегодня придете на бейсбольную игру высшей лиги, вы увидите, что защита относится практически к каждому игроку противника как к Теду Уильямсу. Если Бодро просто пронаблюдал за тем, куда Уильямс обычно направлял удар, то сейчас менеджеры точно знают, куда каждый игрок направлял удар в течение последней недели, за последний месяц, за всю карьеру, играя против левшей, в ситуации, когда у него было два страйка, и так далее и тому подобное. Используя эту собранную информацию, они могут проанализировать текущую ситуацию и рассчитать расстановку игроков, дающую наибольшую вероятность успеха. Иногда это включает в себя довольно-таки существенные перемещения игроков по полю.

Перенос защиты – лишь часть гораздо более серьезного вопроса: какие шаги могут предпринять бейсбольные команды для максимизации вероятности победы? В поисках ответа на этот вопрос специалисты по бейсбольной статистике изучили каждую переменную, которую смогли количественно измерить, и присвоили ей определенную ценность. Насколько дабл ценнее сингла? Когда, если вообще когда-либо, имеет смысл использовать сэкрифайс-бант для перемещения раннера с первой на вторую базу?

Ответы на все эти вопросы смешаны и объединены в математические модели этого спорта. В мире бейсбола существуют параллельные вселенные, и каждая из них представляет собой сложное вероятностное полотно. Они включат в себя каждое измеримое отношение между каждым спортивным компонентом, от уоков и хоум-ранов и до самих игроков. Цель модели – просчитать разные сценарии на каждой развилке и найти оптимальные комбинации. Если Yankees поставят питчера-правшу против сильного отбивающего Майка Траута из Angels , в сравнении с их текущим питчером – кто с большой вероятностью его выбьет? И как это повлияет на общую вероятность победы?

Бейсбол – идеальная база для предиктивного математического моделирования. Как писал Майкл Льюис в своем бестселлере Moneyball (2003) [1] Moneyball. Как математика изменила самую популярную спортивную лигу в мире / пер. Натальи Воронцовой. М.: Манн, Иванов и Фербер, 2013. , этот спорт привлекал самых увлеченных аналитиков данных на протяжении всей его истории. В прошлом фанаты изучали статистику по оборотным сторонам бейсбольных карточек, анализируя закономерности хоум-ранов Карла Ястржемски или сравнивая общее количество страйк-аутов Роджера Клеменса и Дуайта Гудена. Но начиная с 1980-х годов за дело взялись серьезные специалисты по статистике – они начали разбираться, что же, собственно, означают все эти цифры вместе с огромным количеством новых данных: как именно они конвертируются в победы и как руководство команды может достичь максимального успеха при минимальных вложениях.

Сегодня термин moneyball («денежный мяч») служит условным обозначением любого статистического подхода в областях, где в течение долгого времени господствовала исключительно интуиция. Но пример бейсбола – это пример здорового анализа, который я привела для контраста с более токсичными примерами анализа, которые я считаю действием ОМП и которые появляются во все большем количестве областей нашей жизни. Бейсбольные модели справедливы, в частности, из-за своей прозрачности. Любой человек располагает доступом к статистике и может более или менее понять, как она интерпретируется. Да, конечно, модель одной команды может придавать больше ценности хоум-раннерам, в то время как другие могут их слегка недооценивать из-за того, что сильные отбивающие имеют тенденцию к большому количеству страйк-аутов. Но в любом случае информация о числе хоум-ранов и страйк-аутов доступна для всех интересующихся.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Убийственные большие данные. Как математика превратилась в оружие массового поражения»

Представляем Вашему вниманию похожие книги на «Убийственные большие данные. Как математика превратилась в оружие массового поражения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Убийственные большие данные. Как математика превратилась в оружие массового поражения»

Обсуждение, отзывы о книге «Убийственные большие данные. Как математика превратилась в оружие массового поражения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x