Это можно объяснить, но нельзя постигнуть.
Ното Sapiens не может не восхищаться этим творением Природы
Вопрос: Но не накладывает ли прямая зависимость от техники ограничение на научную фантазию? Сложилась парадоксальная ситуация: новая техника не только создается под конкретную научную задачу, а также ставит новые проблемы.
Ответ:Открытие анизотропии космического излучения как раз и имеет такую историю. Непонятно, что было раньше: теория или технология. Дело в том, что наше представление об устройстве Вселенной менялось. В 70-е годы XX века ученые думали, что Вселенная состоит из обычного вещества, которое может светиться. Для этой космологической модели предполагалось, что флуктуация (то есть максимальные отклонения) реликтового излучения на уровне 10 -3. Чтобы вы представляли: если мы возьмем биллиардный шарик и станем его царапать, то размер царапины был бы одна тысячная от размера этого шарика. Вот что означает малость этих неровностей. Соответственно строились телескопы, которыми предполагалось измерять флуктуации на этом уровне. Но они ничего не намерили. Затем сроились новые приборы, и тоже безрезультатно. Стало ясно, что данная модель устройства Вселенной несовершенна. Тогда в 80-е годы была предложена новая теория, включающая в себя скрытое вещество и предсказывающее неоднородности на уровне 1 к 10 тысячам. Правильная теория, оказывается, дает неоднородность на уровне 1 к 100 тысячам.
Вопрос: Чья это была идея?
Ответ:Точнее — это была целая цепочка разных моделей со скрытым веществом — «горячим» и «холодным». «Горячая» модель была предложена в СССР группой академика Я.Зельдовича, в которой участвовал и профессор С. Шандарин. А «холодная» модель была предложена канадскими и американскими учеными. В частности, мой коллега по институту профессор Дик Бонд придумал сами термины — «холодное» и «горячее» вещество. Теория с «горячим» веществом предсказывала флуктуацию 10 -4. Возвращаясь к примеру с биллиардным шаром: царапинки на нем были бы одна десятитысячная от радиуса. «Холодная» же модель подразумевала флуктуацию 10 -5. Но когда делали замеры, то сами флуктуации все равно не находили, а лишь предполагали верхние пределы — т. е. выше чего они быть не могут. В тот момент для ученых сложилась фрустрирующая ситуация. Наконец в 1992 году флуктуации были обнаружены на том уровне, который объяснялся моделью с «холодным» веществом. Правда, не самой ее экономичной версией — моделью, которая включала в себя так называемую «темную энергию». В то время физики не хотели вводить в оборот понятие «темной энергии», поскольку такие фундаментальные вещи не вводятся без глубоких причин. И уже в 1990-х годах стали накапливаться факты, которые убедили ученых в том, что ее (темную энергию) просто необходимо ввести.
Сейчас технические достижения используют для подтверждения еще одной теории — гравитационных волн. Их пытаются измерить на Земле, поскольку в данном случае атмосфера не помеха, но для этого требуется широкая (в буквальном смысле) база, и потому гравитационно-волновой телескоп должен быть очень большим. Сейчас такой наземный телескоп 4-х километровый, и больше его уже не сделать. А вот если вывезти на орбиту три спутника, то они образуют очень большой треугольник — 100 тыс. км (одна сторона), что дает нам новые возможности. Таким образом, планируется новый проект для измерения гравитационных волн.
Это можно объяснить, но нельзя постигнуть
Вопрос: Кто будет строить?
Ответ:Коллаборация, в которой лидируют американцы. В России есть группа Брагинского с мировой известностью. И в этом смысле нашей фантазии не надо идти дальше. Потому что тут есть куда двигаться. Эти проекты безусловно дадут научные открытия.
Вопрос: То есть такие патовые ситуации, как в физике элементарных частиц — когда могут направления закрыть, если ускоритель новый ничего не даст, так как денег больше не собрать — вам такие перспективы пока не грозят? Вам в буквальном смысле есть куда двигаться — Вселенная бесконечна?
Ответ:Да, нам ничего не грозит. Пока мы прогнозируем технологические проекты такого рода до 30-х годов XXI века.
Вопрос: В области космологии Америка сейчас безусловный лидер. А что собой представляет Канада?
Ответ:Канада — маленькая страна, всего 30 с небольшим миллионов жителей, но в области астрофизики она котируется под 3-м номером в мире. Уступая, кроме Штатов, пожалуй, только Англии. Одна из причин успеха Канады в этой области — вкладывание денег не в крупные проекты, а в людей. В Канаде мощные теоретические центры, которые требуют меньших денег, чем строительство больших научных инструментов, но от которых очень большой коэффициент полезного действия. Разумеется, Канада участвует во многих современных астрофизических проектах. Как и Россия, впрочем, поскольку имеет флот ракет, которые можно запускать на орбиту. Особенно тесны русские контакты с европейцами. Академик Рашид Сюняев, содиректор немецкого института астрофизики Макса Планка, осуществляет связь между русскими космическими технологиями и западными научными проектами.
Читать дальше