Мелкие частица разгружаются через порог (борт) с потоком воды, а крупные вычерпываются спиралью в сборник.
Спиральный классификатор работает в непрерывном режиме.
Крупность разделения регулируется скоростью вращения спиралей.
Рис. 1.14. Принцип работы спирального классификатора.
1.3.2. Классифицирующий гидроциклон
Принцип работы классифицирующего гидроциклона можно увидеть наливая воду в ведро из шланга, направив поток по касательной вдоль стенки.
Классифицирующий гидроциклон состоит (рис. 1.15) из цилиндрической и конических частей, питающего патрубка, сливной (мелкий продукт) и песковой (крупный продукт) насадок. Сливная насадка «утоплена» в цилиндрическую часть гидроциклона, и эту часть называют сливным стаканом.
Рис. 1.15. Принцип работы гидроциклона.
Диаметр отверстия в песковой насадке всегда меньше питающего диаметра, таким образом формируется восходящий поток, улавливаемый сливным стаканом. Данный восходящий поток выносит мелкие частицы в сливной продукт. Более крупные, а значит, тяжелые частицы тонут, и попадают в песковый продукт.
Конструкции гидроциклонов разнообразны. По форме различают цилиндрические (обычно «лежат на боку»), цилиндроконические (вертикальные), часто несколько гидроциклонов объединяют в один аппарат.
Из гидроциклонов малых диаметров формируют батареи, от 2–3 шт. до 40–50 шт.
Классифицирующий гидроциклон работает в непрерывном режиме.
Крупность разделения регулируется соотношением диаметров насадок и входящим давлением воды.
Грохочение является классификацией с помощью просеивающей поверхности.
Аппараты для классификации с решетом называются грохотами.
Рис. 1.16. Основные формы просеивающих поверхностей.
По геометрической форме отверстий они делятся: на прямоугольные от квадрата до щели, круглые, струнные, с подвижной ячейкой. Решето может быть подвижным (инерционные грохоты) или неподвижным, а также их может быть несколько.
Инерционные грохоты по сочетанию частоты колебаний решета и материала подразделяются на дорезонансные (частота колебаний решета больше чем материала), резонансные (равны) и зарезонансные или высокочастотные. Для последних характерно наличие двойного колебательного контура: обычный дорезонансный грохот трясет короб, в котором находится еще один дорезонансный грохот. Частоты колебаний этих двух грохотов подбираются таким образом, чтобы их суммарная частота была больше, чем у материала.
Просеивающая поверхность наиболее часто формируется способами, показанными на рис. 1.16. Колосниковое решето набирается из параллельных колосков, струнное напоминает арфу, шпальтовое собирается из колосниковых ячеек, перфорированное может иметь отверстия любой нужной формы и взаимного расположения, плетеное аналогично сетке-рабице, штампованное шпальтовое производится из резины или полиуретана под действием высокого давления, также решето может быть сварным, быть результатом наложения нескольких сит (просеивающее на несущее).
Грохоты могут быть подвижными и неподвижными.
Наиболее часто употребляемые материалы для создания просеивающих поверхностей: сталь, резина, полиуретан, карбиды, и их комбинации.
Частицы просеиваемого материала в зависимости от собственного диаметра могут быть «легкими», «трудными» и «затрудняющими», как показано на рис. 1.17.
«Легкие» зерна диаметром меньше примерно 75 % от диаметра ячейки решета, т. е. свободно просеиваются. «Трудные» зерна диаметром от 75 до 99 % от диаметра ячейки решета. «Затрудняющие» зерна примерно равны отверстию ячейки решета, склонны к застреванию и уменьшают рабочую площадь грохота.
Мелкие частицы условного размера меньше 1 мм называются «шлам», для антрацита – «штыб», разница возникла исторически из-за разного звучания одного и того же слова соответственно на английском и немецком языках, так как развитием угольной отрасли занимались английские специалисты, а антрацитовой – немецкие.
Как показано на рис. 1.17., мелкие частицы, содержащиеся в исходном (рядовом) угле называются первичным, а образованные при обработке на фабрике – вторичным шламом.
Читать дальше