Питер Макоуэн - Вычислительное мышление - Метод решения сложных задач

Здесь есть возможность читать онлайн «Питер Макоуэн - Вычислительное мышление - Метод решения сложных задач» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Альпина Паблишер, Жанр: Справочники, Самосовершенствование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вычислительное мышление: Метод решения сложных задач: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вычислительное мышление: Метод решения сложных задач»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Вычислительное мышление – это мощный инструмент для решения задач и понимания мира. Оно лежит в основе программирования, благодаря ему ученые решают задачи в области информатики, но его же можно использовать и для решения повседневных проблем. Оно настолько важно, что во многих странах его стали преподавать в школе. Но в чем же его суть?
Если вы хотите узнать больше о вычислительном мышлении, ищете новые способы стать эффективнее и любите математические игры и головоломки, эта книга для вас. В то же время вы научитесь навыкам, необходимым для программирования и создания новых технологий. Даже если вы не планируете писать программы и изобретать, вы сможете применять навыки вычислительного мышления, чтобы справиться с любыми жизненными проблемами.

Вычислительное мышление: Метод решения сложных задач — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вычислительное мышление: Метод решения сложных задач», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Каким бы ни был финал, все это — мошенничество с целью наживы, но как оно работает? С виду все честно. Но почему люди ловятся на такие схемы в реальности?

Схема аферы

В чем же обман? Давайте посмотрим, как загадочная математика превращает вроде бы честную схему в принципиально мошенническую. За аферой стоит простая математическая ошибка, которую делают люди, чью бдительность усыпили образ предсказательницы и сценарий диалога (подробнее о нем ниже). Посмотрим на математическую подоплеку. Если наша искусственная гадалка выбирает удачную карту нужного цвета, ей достаются две монеты. Если у нее не получается, она платит три монеты. Этот штраф кажется приличным вознаграждением, пока вы не вспоминаете, что две из этих монет вы сами отдали за предсказание. Таким образом, если карты не совпадают, ИИ теряет только одну монету.

Здравый смысл подсказывает, что нужно рассмотреть вероятность обоих исходов. Удачная карта, по сути, ерунда, это просто любая карта, взятая из полной колоды. Тестовая карта — еще одна случайная карта из оставшейся колоды. То есть это все равно что играть в цветной «Снап!» с полной перетасованной колодой. Шанс, что две карты совпадут по цвету (выпадут черная с черной или красная с красной), равен шансу, что карты не совпадут по цвету (выпадут красная с черной или черная с красной). Это шанс 50 : 50.

Если наш ИИ-псевдогадалка повторит эту схему несколько раз, то начнет получать деньги. Почему? Представьте, что у него появится 10 жертв. В среднем, сыграв 10 раз, 50% (пять человек) отыграют деньги, потому что карты не совпадут, однако 50% (пять человек) уйдут без наличности. На рис. 53 эта ситуация обобщена.

Чем больше людей сыграет тем больше сможет получить мошенникИИ Сделать - фото 59

Чем больше людей сыграет, тем больше сможет получить мошенник-ИИ. Сделать ошибку довольно легко. Мы не видим, какие математические последствия повлекут наши действия в долгосрочной перспективе. Такие вещи происходят часто, и не только в случае мошенничества. Например, парадокс дня рождения: как это ни удивительно, если в одном помещении соберутся всего лишь 23 человека, шанс, что у двоих совпадет день рождения, равен 50%.

Поймаем их на Барнума

Теперь мы знаем, как устроена наша мошенническая схема. Но как заставить людей на нее купиться? Если не вдаваться в подробности, хватит убедительной математики. Если нечего терять, значит, нет причин не вступить в игру. Но есть и другие способы, которые помогут нам привлечь клиентов. В шестой главе мы говорили о виртуальном собеседнике— это системы ИИ, способные имитировать разговор. Они работают в беседах на общие темы, но можно ли создать с их помощью интерфейс для взаимодействия с клиентом, который будет таким же убедительным, как гадалка?

У нас должно сразу сложиться впечатление, что виртуальный собеседник умеет предсказывать, — еще до того, как он предложит вытащить удачную карту. Но как псевдогадалке завоевать доверие? Для этого пригодятся так называемые утверждения Барнума,которые применяют, чтобы вызвать доверие, манипулируя нашим восприятием языка. Они названы в честь знаменитого циркового антрепренера Финеаса Барнума,который прославился своими мистификациями. Эффект Барнума основан на том, что люди склонны видеть точное описания себя в утверждениях, которые на самом деле применимы к большим группам, например «порой вы сомневаетесь в сделанном выборе» или «некоторые ваши сны очень далеки от реальности». Да уж! Конечно, они подходят всем, но в ходе экспериментов участники указывали, что именно эти утверждения относятся непосредственно к ним. Диалог с нашей ИИ-гадалкой с самого начала строится с использованием утверждений Барнума. То есть в разговоре фигурируют только обобщения, но мы обрабатываем их смысл таким образом, что нам кажется, будто ИИ обладает неким глубоким и мистическим знанием о нас. Так нас втягивают в аферу со счастливой картой.

Как и любой виртуальный собеседник, наш тоже может вести более сложный диалог. Необязательно следовать точному сценарию. Можно на выбор взять набор утверждений Барнума. Это может быть случайный выбор, или же робот будет реагировать на высказывания жертвы с помощью наиболее подходящих утверждений Барнума, и тогда получится убедительнее. Вы, как создатель, сами определяете уровень сложности.

Строим шаг за шагом

Итак, у нас есть убедительная мошенническая схема и бот, который будет привлекать игроков и заставлять их расставаться с деньгами. Чтобы создать ИИ, который сможет целиком провернуть эту аферу, необходимы еще два элемента. Система должна проверять, действительно ли игрок отдал деньги. В противном случае может выясниться, что она сама стала жертвой обмана — радостно раздавала деньги, но ничего не брала себе! Ей нужно уметь проверять, положила ли жертва две монеты на стол. Но этот элемент мы уже создали — мы просто возьмем одну обученную нейронную сетьиз главы 7.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вычислительное мышление: Метод решения сложных задач»

Представляем Вашему вниманию похожие книги на «Вычислительное мышление: Метод решения сложных задач» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Вычислительное мышление: Метод решения сложных задач»

Обсуждение, отзывы о книге «Вычислительное мышление: Метод решения сложных задач» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x