Первый вариант книги был представлен нами на 35-ой Московской международной книжной ярмарке в 2022 году.
Эта книга является абсолютно открытым и свободным к распространению документом. В случае, если Вы используете ее в своей практической работе, просим Вас делать ссылку на эту книгу.
Многие из терминов и определений к ним, в этой книге, встречаются в сети Интернет. Они повторяются десятки или сотни раз на различных информационных ресурсах (в основном на зарубежных). Тем не менее, мы поставили перед собой цель – собрать и систематизировать самые актуальные из них в одном месте из самых разных источников, нужные из них перевести на русский язык и адаптировать, а какие-то и написать заново, исходя из собственного опыта. Учитывая вышесказанное, мы не претендуем на авторство или уникальность представленных терминов и определений.
Ссылки на первоисточники проставлены у оригинальных терминов и определений (то есть, если определение изначально было на английском языке из иностранного источника, то ссылка указывается после данного определения. Ссылка на тоже определение, переведенное или адаптированное на русский язык не указывается. Это сделано с тем, чтобы не дублировать ссылки, не перегружать текст и не путать читателя).
Мы продолжаем работу по улучшению качества и содержания текста этой книги, в том числе дополняем ее новыми знаниями по предметной области. Будем Вам благодарны за любые отзывы, предложения и уточнения. Направляйте их, пожалуйста, на aleksander.chesalov@yandex.ru
Приятного Вам чтения и продуктивной работы!
Ваши, Александр Чесалов, Александр Власкин и Матвей Баканач.
16.08.2022
Глоссариум по искусственному интеллекту
А/B-тестирование, также известное как сплит-тестирование (A/B Testing) – это процесс экспериментирования, при котором две или более версии переменной (веб-страницы, элемента страницы и т. д.) одновременно демонстрируются разным сегментам посетителей веб-сайта, чтобы определить, какая версия оказывает максимальное влияние и повышает бизнес-показатели.
Абдуктивное логическое программирование (ALP) (Abductive logic programming) – это высокоуровневая структура представления знаний, которая может использоваться для решения проблем декларативно – на основе абдуктивного рассуждения. Она расширяет нормальное логическое программирование, позволяя некоторым предикатам быть неполно определенными, объявленными как абдуктивные предикаты.
Абдукция (Abductive reasoning) –это форма логического вывода, которая начинается с наблюдения или набора наблюдений, а затем пытается найти самое простое и наиболее вероятное объяснение. Этот процесс, в отличие от дедуктивного рассуждения, дает правдоподобный вывод, но не подтверждает его основаниями для вывода.
Абстрактный тип данных (Abstract data type) – это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций. Формально АТД может быть определён как множество объектов, определяемое списком компонентов (операций, применимых к этим объектам, и их свойствам).
Абстракция (Abstraction) – это использование только тех характеристик объекта, которые с достаточной точностью представляют его в данной системе. Основная идея состоит в том, чтобы представить объект минимальным набором полей и методов и при этом с достаточной точностью для решаемой задачи.
Автоассоциативная память (Auto Associative Memory) – это однослойная нейронная сеть, в которой входной обучающий вектор и выходные целевые векторы совпадают. Веса определяются таким образом, чтобы сеть хранила набор шаблонов. Как показано на следующем рисунке, архитектура сети автоассоциативной памяти имеет «n» количество входных обучающих векторов и аналогичное «n» количество выходных целевых векторов.
Автокодер (Autoencoder) – это нейронная сеть, которая копирует входные данные на выход. По архитектуре похож на персептрон. Автоэнкодеры сжимают входные данные для представления их в latent-space (скрытое пространство), а затем восстанавливают из этого представления output (выходные данные). Цель – получить на выходном слое отклик, наиболее близкий к входному. Отличительная особенность автоэнкодеров – количество нейронов на входе и на выходе совпадает.
Читать дальше