Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов

Здесь есть возможность читать онлайн «Александр Власкин - Глоссариум по искусственному интеллекту - 2500 терминов» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Руководства, Прочая околокомпьтерная литература, Прочая научная литература, Технические науки, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Глоссариум по искусственному интеллекту: 2500 терминов: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Глоссариум по искусственному интеллекту: 2500 терминов»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Дорогой читатель!Твоему вниманию предлагается уникальная книга!Современный глоссарий из более чем 2500 популярных терминов и определений по машинному обучению и искусственному интеллекту.Эта книга уникальна еще и тем, что ее писали эксперты-практики, которые работали вместе над Программой Центра искусственного интеллекта МГТУ им. Н. Э. Баумана, программами «Искусственный интеллект» и «Глубокая аналитика» проекта «Приоритет 2030» МГТУ им. Н. Э. Баумана в 2021—2022 годах.

Глоссариум по искусственному интеллекту: 2500 терминов — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Глоссариум по искусственному интеллекту: 2500 терминов», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Имитация отжига(SA) ( Simulated annealing) – это вероятностный метод аппроксимации глобального оптимума заданной функции. В частности, это метаэвристика для аппроксимации глобальной оптимизации в большом пространстве поиска для задачи оптимизации.

Импульс (Momentum) –это метод машинного обучения, реализующий импульсный алгоритм градиентного спуска, очень эффективной техники в котором шаг обучения зависит не только от градиента текущего шага для направления поиска, а также от градиента прошлых шагов, которые непосредственно предшествовали ему чтобы определить направление движения. Импульс включает в себя вычисление экспоненциально взвешенного скользящего среднего градиента с течением времени, аналогичного импульсу в физике. Импульс способствует обучению не застревать в локальных минимумах.

Инвариантность размера( Size invariance)в задаче классификации изображений – это способность алгоритма успешно классифицировать изображения даже при изменении размера изображения. Например, алгоритм все равно может идентифицировать кошку независимо от размера изображения – будь то 2 Мб или 200 Кб пикселей. Обратите внимание, что даже самые лучшие алгоритмы классификации изображений по-прежнему имеют практические ограничения на неизменность размера. Например, алгоритм (или человек) вряд ли правильно классифицирует изображение кошки, занимающее всего 20 пикселей.

Индивидуальная справедливость (Individual fairness) – это метрика справедливости, которая проверяет, одинаково ли классифицируются похожие лица. Например, Brobdingnagian Academy может захотеть удовлетворить индивидуальную справедливость, гарантируя, что два студента с одинаковыми оценками и результатами стандартизированных тестов с одинаковой вероятностью будут приняты. Обратите внимание, что индивидуальная справедливость полностью зависит от того, как вы определяете «сходство» (в данном случае оценки и баллы за тесты), и вы можете столкнуться с риском возникновения новых проблем со справедливостью, если ваша метрика схожести пропускает важную информацию (например, строгость учащегося). учебный план).

Индуктивная предвзятость алгоритма обучения (Inductive Bias) – это набор предположений, которые обучаемая система использует для прогнозирования результатов на основе вводных параметров, с которыми она ещё не сталкивалась.

Индуктивное рассуждение (Inductive reasoning) – это метод рассуждения, который использует предпосылки для предоставления доказательств в поддержку вывода. В отличие от дедуктивного рассуждения, индуктивное рассуждение работает как нисходящая логика, которая дает заключение путем обобщения или экстраполяции от частных случаев к общим правилам.

Индукция (Induction) (от латинского inductio – «наведение») –это метод получения логического вывода при помощи перехода от частного к общему, т.е. индукция является противоположностью дедукции. В этом методе работают не только законы логики, но и математические, психологические и фактические представления.

Индустриальный Интернет (Industrial Internet) – это концепция построения информационных и коммуникационных инфраструктур на основе подключения к информационно-телекоммуникационной сети «Интернет» промышленных устройств, оборудования, датчиков, сенсоров, систем управления технологическими процессами, а также интеграции данных программно-аппаратных средств между собой без участия человека.

Индустрия ИИ (AI industry) – например, commercial AI industry – это коммерческая индустрия ИИ, коммерческий сектор индустрии ИИ.

Инженерия знаний (Knowledge engineering) – это создание систем, основанных на знаниях, включая все научные, технические и социальные аспекты. Также, это область искусственного интеллекта, которая создает правила, применяемые к данным, чтобы имитировать мыслительный процесс человека-эксперта. Он изучает структуру задачи или решения, чтобы определить, как делается вывод.

Инкрементное обучение (Incremental learning) – это пошаговое обучение является методом машинного обучения, в котором входные данные непрерывно используются для расширения знаний существующей модели для дальнейшего обучения модели. Оно представляет собой динамический метод обучения, который можно применять, когда данные обучения постепенно становятся доступными с течением времени или их размер выходит за пределы системной памяти. Задачей инкрементального обучения является адаптация модели обучения к новым данным, не забывая при этом уже имеющиеся знания.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов»

Представляем Вашему вниманию похожие книги на «Глоссариум по искусственному интеллекту: 2500 терминов» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов»

Обсуждение, отзывы о книге «Глоссариум по искусственному интеллекту: 2500 терминов» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x