Это подводит нас к центральной задаче, которую мне нужно было решить в рамках анализа игры в блэкджек: как игрок может в общем случае оценить частично израсходованную колоду, чтобы определить, выгодна ли для него данная ситуация, и если выгодна, то насколько именно? Эта задача была решена [30] Я решил эту задачу в приближении высокой точности. Еще более точные вычисления были выполнены впоследствии Джулианом Брауном из корпорации IBM. Всюду, где возможно, мы используем в этом издании не наши изначальные, а его результаты.
при помощи нескольких вопросов, заданных высокоскоростному компьютеру IBM 704. Первый вопрос был таким: предположим, что в блэкджек играют колодой, из которой удалены только четыре туза. Какова в такой ситуации оптимальная стратегия игрока и каково преимущество заведения (или игрока)? Другими словами, компьютер должен был сделать в точности то же самое, что он делал при разработке базовой стратегии, но с одним отличием. На этот раз задачу нужно было решить для колоды, в которой отсутствуют четыре туза.
Результат получился интересным. При игре с колодой, в которой не хватает четырех тузов, казино имеет преимущество 2,42 % перед игроком, играющим по оптимальной стратегии. Могло бы показаться, что изъятие четырех тузов должно повлиять на положение дел значительно сильнее, чем удаление любых других четырех карт, поскольку тузы играют в блэкджеке уникальную роль. Они необходимы для образования блэкджека и мягких рук, а пара тузов наиболее выгодна с точки зрения разделения. Когда бы тузы ни появлялись в игре, кажется, что они помогают игроку. Поэтому некоторые игроки могут предполагать, что колебания содержания тузов в колоде должны иметь значительно больший эффект, чем колебания содержания любых других карт, и что следует попросту отдельно отслеживать, что происходит с тузами. Однако далее мы увидим, что значение тузов не столь подавляюще велико.
Затем компьютеру задали поочередно вычислить преимущество игрока и заведения при оптимальной стратегии игры с колодой, из которой были удалены четыре двойки, четыре тройки и т. д. Результаты для этих и некоторых других особых колод приведены в таблице 4.1. Соответствующие оптимальные стратегии также были рассчитаны, но не приводятся здесь ради экономии места.
Из таблицы 4.1 следует, что недостаток карт со значениями от 2 до 8 может дать игроку преимущество, а относительный избыток таких карт может ему повредить. Напротив, недостаток девяток, десяток и тузов должен быть вреден для игрока, а их избыток должен идти ему на пользу. Можно разработать несколько разных выигрышных стратегий, основанных на подсчете карт одного или нескольких типов. Одна из простых и надежных выигрышных стратегий основана на подсчете пятерок. Она подробно описывается в оставшейся части этой главы. Читателю, которому базовая стратегия, изложенная в главе 3, кажется трудной, следует в будущем использовать в качестве первой выигрышной стратегии игры в блэкджек стратегию подсчета пятерок.
Вместе с тем читателю, легко освоившему базовую стратегию, рекомендуется использовать в качестве первой выигрышной стратегии игры стратегию подсчета очков, представленную в следующей главе. Она обладает многочисленными преимуществами по сравнению со стратегией подсчета пятерок при лишь незначительном увеличении сложности. Такой читатель, вероятно, не нуждается в длительных тренировках по использованию стратегии подсчета пятерок. Однако, поскольку различные обсуждения, приводимые далее в этой главе, важны и для стратегий, изложенных далее, эту главу следует внимательно прочитать и разобрать даже игрокам, собирающимся использовать более сильные стратегии.
Первая выигрышная стратегия: подсчет пятерок
Из таблицы 4.1 видно, что удаление из колоды четырех карт одинакового достоинства наиболее сильно изменяет относительное преимущество игрока и заведения в случае изъятия всех четырех пятерок. Этот эффект даже сильнее, чем в случае удаления всех четырех тузов. Что еще важнее, удаление четырех пятерок дает игроку преимущество 3,6 %.
Предположим, что частично отыгранная колода не содержит пятерок, но содержит достаточно карт для следующего тура игры, то есть что в следующем туре пятерки не появятся. Можно показать, что такую ситуацию можно считать математически идентичной ситуации, в которой карты раздают из полной колоды, в которой отсутствуют все четыре пятерки. Не пытаясь привести полного объяснения этого факта, отметим лишь, что таким образом, если игрок знает, что в следующем туре игры не могут появиться пятерки, и следует стратегии, которую мы будем называть «подсчетом пятерок», он получает в этом туре игры преимущество 3,6 %, как указано в таблице 4.1.
Читать дальше