БСЭ БСЭ - Большая Советская Энциклопедия (ЗН)

Здесь есть возможность читать онлайн «БСЭ БСЭ - Большая Советская Энциклопедия (ЗН)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Энциклопедии, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большая Советская Энциклопедия (ЗН): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большая Советская Энциклопедия (ЗН)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Большая Советская Энциклопедия (ЗН) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большая Советская Энциклопедия (ЗН)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Дальнейшее развитие З. м. было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков

знак значение Кто ввёл Когда введён
Знаки индивидуальных объектов
¥ бесконечность Дж. Валлис 1655
e' основание натуральных логарифмов Л. Эйлер 1736
p отношение длины окружности к диаметру У. Джонс Л. Эйлер 1706 1736
i корень квадратный из -1 Л. Эйлер 1777 (в печати 1794)
i j k единичные векторы, орты У. Гамильтон 1853
П (а) угол параллельности Н.И. Лобачевский 1835
Знаки переменных объектов
x,y, z' неизвестные или переменные величины Р. Декарт 1637
r вектор О. Коши 1853
Знаки индивидуальных операций
+ сложение немецкие математики Конец 15 в.
–' вычитание
´ умножение У. Оутред 1631
× умножение Г. Лейбниц 1698
: деление Г. Лейбниц 1684
a 2, a 3,…, a n степени Р. Декарт 1637
И. Ньютон 1676
картинка 24 корни К. Рудольф 1525
А. Жирар 1629
Log логарифм И. Кеплер 1624
log Б. Кавальери 1632
sin синус Л. Эйлер 1748
cos косинус
tg тангенс Л. Эйлер 1753
arc.sin арксинус Ж. Лагранж 1772
Sh гиперболический синус В. Риккати 1757
Ch гиперболический косинус
dx, ddx, … дифференциал Г. Лейбниц 1675 (в печати 1684)
d 2x, d 3x,…
картинка 25 интеграл Г. Лейбниц 1675 (в печати 1686)
картинка 26 производная Г. Лейбниц 1675
¦¢x производная Ж. Лагранж 1770, 1779
y’
¦¢(x)
Dx разность Л. Эйлер 1755
картинка 27 частная производная А. Лежандр 1786
картинка 28 определённый интеграл Ж. Фурье 1819-22
S сумма Л. Эйлер 1755
П произведение К. Гаусс 1812
! факториал К. Крамп 1808
|x| модуль К. Вейерштрасс 1841
lim предел У. Гамильтон, многие математики 1853, начало 20 в.
lim
n = ¥
lim
n ® ¥
x дзета-функция Б. Риман 1857
Г гамма-функция А. Лежандр 1808
В бета-функция Ж. Бине 1839
D дельта (оператор Лапласа) Р. Мёрфи 1833
Ñ набла (оператор Гамильтона) У. Гамильтон 1853
Знаки переменных операций
jx функция И. Бернули 1718
f ('x) Л. Эйлер 1734
Знаки индивидуальных отношений
=' равенство Р. Рекорд 1557
>' больше Т. Гарриот 1631
<' меньше
º сравнимость К. Гаусс 1801
|| параллельность У. Оутред 1677
^ перпендикулярность П. Эригон 1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

картинка 29

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц. Ему, в частности, принадлежат употребляемые ныне З. м. дифференциалов

dx, d 2 x, d 3 x

и интеграла

картинка 30

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру. Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f ( x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) — окружность, периферия, 1736], мнимой единицы

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Отзывы о книге «Большая Советская Энциклопедия (ЗН)»

Обсуждение, отзывы о книге «Большая Советская Энциклопедия (ЗН)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x