БСЭ БСЭ - Большая Советская Энциклопедия (СФ)

Здесь есть возможность читать онлайн «БСЭ БСЭ - Большая Советская Энциклопедия (СФ)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Энциклопедии, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большая Советская Энциклопедия (СФ): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большая Советская Энциклопедия (СФ)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Большая Советская Энциклопедия (СФ) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большая Советская Энциклопедия (СФ)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сфери'ческая тригономе'трия,математическая дисциплина, изучающая зависимости между углами и сторонами сферических треугольников (см. Сферическая геометрия ) . Пусть А , В, С — углы и а, b, с — противолежащие им стороны сферического треугольника ABC (см. рис. ). Углы и стороны сферического треугольника связаны следующими основными формулами С. т.:

Большая Советская Энциклопедия СФ - изображение 14 (1)

cos а = cos b cos с + sin b sin с cos А, (2)

cos A = - cos B cos С + sin B sin С cos a, (2 1)

sin a cos B = cos b sin c - sin b cos с cos А , (3)

sin А cos b = cos B sin C + sin B cos С cos a ; (3 1)

в этих формулах стороны а, b, с измеряются соответствующими центральными углами, длины этих сторон равны соответственно aR, bR, cR, где R — радиус сферы. Меняя обозначения углов (и сторон) по правилу круговой перестановки: А ® В ® С ® А ( а ® b ® с ® а ) , можно написать другие формулы С. т., аналогичные указанным. Формулы С. т. позволяют по любым трём элементам сферического треугольника определить три остальные (решить треугольник).

Для прямоугольных сферических треугольников ( А = 90°, а — гипотенуза, b, с — катеты) формулы С. т. упрощаются, например:

sin b = sin a sin В , (1')

cos a = cos b cos c, (2')

sin a cos B = cos b sin c . (3')

Для получения формул, связывающих элементы прямоугольного сферического треугольника, можно пользоваться следующим мнемоническим правилом (правилом Непера): если заменить катеты прямоугольного сферического треугольника их дополнениями и расположить элементы треугольника (исключая прямой угол А ) по кругу в том порядке, в каком они находятся в треугольнике (то есть следующим образом: В, а, С, 90° - b, 90° - с), то косинус каждого элемента равен произведению синусов неприлежащих элементов, например,

cos а = sin (90° - с ) sin (90° - b )

или, после преобразования,

cos а = cos b cos с (формула 2').

При решении задач удобны следующие формулы Деламбра, связывающие все шесть элементов сферического треугольника:

При решении многих - фото 15 ,

Большая Советская Энциклопедия СФ - фото 16,

При решении многих задач сферической астрономии в зависимости от - фото 17,

При решении многих задач сферической астрономии в зависимости от требуемой - фото 18.

При решении многих задач сферической астрономии, в зависимости от требуемой точности, часто оказывается достаточным использование приближённых формул: для малых сферических треугольников (то есть таких, стороны которых малы по сравнению с радиусом сферы) можно пользоваться формулами плоской тригонометрии; для узких сферических треугольников (то есть таких, у которых одна сторона, например а, мала по сравнению с другими) применяют следующие формулы:

1 3 или более точные формулы 1 - фото 19 (1’’)

3 или более точные формулы 1 3 С т возникла значительно р - фото 20 (3’’)

или более точные формулы:

1 3 С т возникла значительно раньше плоской тригонометрии - фото 21 (1’’’)

3 С т возникла значительно раньше плоской тригонометрии Свойства - фото 22 (3’’’)

С. т. возникла значительно раньше плоской тригонометрии. Свойства прямоугольных сферических треугольников, выражаемые формулами (1')—(3'), и различные случаи их решения были известны ещё греческим учёным Менелаю (1 в.) и Птолемею (2 в.). Решение косоугольных сферических треугольников греческие учёные сводили к решению прямоугольных. Азербайджанский учёный Насирэддин Туей (13 в.) систематически рассмотрел все случаи решения косоугольных сферических треугольников, впервые указав решение в двух труднейших случаях. Основные формулы косоугольных сферических треугольников были найдены арабским учёным Абу-ль-Вефа (10 в.) [формула (1)], немецким математиком И. Региомонтаном (середина 15 в.) [формулы типа (2)], французским математиком Ф. Виетом (2-я половина 16 в.) [формулы типа (2 1)] и Л. Эйлером (Россия, 18 в.) [формулы типа (3) и (3 1)]. Эйлер (1753 и 1779) дал всю систему формул С. т. Отдельные удобные для практики формулы С. т. были установлены шотландским математиком Дж. Непером (конец 16 — начало 17 вв.), английским математиком Г. Бригсом (конец 16 — начало 17 вв.), русским астрономом А. И. Лекселем (2-я половина 18 в.), французским астрономом Ж. Деламбром (конец 18 — начало 19 вв.) и др.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Отзывы о книге «Большая Советская Энциклопедия (СФ)»

Обсуждение, отзывы о книге «Большая Советская Энциклопедия (СФ)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x