• Пожаловаться

БСЭ БСЭ: Большая Советская Энциклопедия (СХ)

Здесь есть возможность читать онлайн «БСЭ БСЭ: Большая Советская Энциклопедия (СХ)» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Энциклопедии / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

БСЭ БСЭ Большая Советская Энциклопедия (СХ)

Большая Советская Энциклопедия (СХ): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большая Советская Энциклопедия (СХ)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

БСЭ БСЭ: другие книги автора


Кто написал Большая Советская Энциклопедия (СХ)? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Большая Советская Энциклопедия (СХ) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большая Советская Энциклопедия (СХ)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод ) . Для практического нахождения приближённых решений уравнений широко используются ЭВМ.

Если изображать члены a n последовательности { a n } на числовой прямой, то С. этой последовательности к а означает, что расстояние между точками a n и а становится и остаётся сколь угодно малым с возрастанием n. В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство ) . Если последовательность { a n } сходится к а, то вне любой окрестности точки а лежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство ) .

В математическом анализе используются различные виды С. последовательности функций { f n ( x )} к функции f ( x ) (на некотором множестве М). Если Большая Советская Энциклопедия СХ - изображение 23 для каждой точки X 0 (из М ) , то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества ) , то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций f n ( x ) к f ( x ) в каждой точке не следует, вообще говоря, С. интегралов от функций f n ( x ) к интегралу от f ( x ) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность { f n ( x )} называется равномерно сходящейся к f ( x ) на множестве М, если

Этот вид С соответствует определению расстояния между функциями f x и - фото 24

Этот вид С. соответствует определению расстояния между функциями f ( x ) и ( х по формуле Д Ф Егоров доказал что если последовательность измеримых - фото 25( х ) по формуле

Д Ф Егоров доказал что если последовательность измеримых функций сходится - фото 26

Д. Ф. Егоров доказал, что если последовательность измеримых функций сходится почти всюду на множестве М, то из М можно так удалить часть сколь угодно малой меры, чтобы на оставшейся части имела место равномерная С.

В теории интегральных уравнений, ортогональных рядов и т. д. широко применяется понятие средней квадратической С.: последовательность { f n ( x )} сходится на отрезке [ a, b ] в среднем квадратическом к f ( x ) , если

Более общо последовательность f n x сходится в среднем с показателем - фото 27.

Более общо, последовательность { f n ( x )} сходится в среднем с показателем р к f ( x ) , если

Большая Советская Энциклопедия СХ - изображение 28.

Эта С. соответствует заданию расстояния между функциями по формуле

Большая Советская Энциклопедия СХ - изображение 29.

Из равномерной С. на конечном отрезке вытекает С. в среднем с любым показателем р. Последовательность частичных сумм разложения функции j(х) с интегрируемым квадратом по нормированной ортогональной системе функций может расходиться в каждой точке, но такая последовательность всегда сходится к j(х) в среднем квадратическом. Рассматриваются также другие виды С. Например, С. по мере: для любого e > 0 мера множества тех точек, для которых Большая Советская Энциклопедия СХ - изображение 30, стремится к нулю с возрастанием n', слабая С.:

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Большая Советская Энциклопедия (СХ)»

Представляем Вашему вниманию похожие книги на «Большая Советская Энциклопедия (СХ)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «Большая Советская Энциклопедия (СХ)»

Обсуждение, отзывы о книге «Большая Советская Энциклопедия (СХ)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.