БСЭ БСЭ - Большая Советская Энциклопедия (УР)

Здесь есть возможность читать онлайн «БСЭ БСЭ - Большая Советская Энциклопедия (УР)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Энциклопедии, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Большая Советская Энциклопедия (УР): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Большая Советская Энциклопедия (УР)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Большая Советская Энциклопедия (УР) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Большая Советская Энциклопедия (УР)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
в области действительных чисел и четыре решения: x 1 = картинка 4, x 2 = – картинка 5, x 3 = i картинка 6, x 4 = – картинка 7 в области комплексных чисел. У. sin x = 0 имеет бесконечное множество решений: x k = k p ( k = 0, ± 1, ± 2,...) в области действительных чисел. Если У. имеет решениями все числа области М, то оно называется тождеством в области М. Например, У. х = картинка 8 является тождеством в области неотрицательных чисел и не является тождеством в области действительных чисел.

Совокупность У., для которых требуется найти значения неизвестных, удовлетворяющие одновременно всем этим У., называется системой У.; значения неизвестных, удовлетворяющих одновременно всем У. системы, – решениями системы. Например, х + 2 y = 5 , 2 x + у – z = 1 является системой двух У. с тремя неизвестными; одним из решений этой системы является х = 1 , у = 2 , z = 3.

Две системы У. (или два У.) называются равносильными, если каждое решение одной системы (одного У.) является решением др. системы (другого У.), и наоборот, причём обе системы (оба У.) рассматриваются в одной и той же области (см. Равносильные уравнения ) . Например, У. х – 4 = 0 и 2 x – 8 = 0 равносильны, т.к. решением обоих У. является лишь х = 4. Всякая система У. равносильна системе вида f k( x 1 , x 2 ,..., х п) = 0, где k = 1, 2,... Процесс разыскания решений У. заключается обычно в замене У. равносильным. В некоторых случаях приходится заменять данное У. другим, для которого совокупность решений шире, чем у данного У. Решения нового У., не являющиеся решениями данного У., называются посторонними решениями (см. Посторонний корень ) .

Например, возводя в квадрат У. картинка 9, получают У. x - 3 = 4, решение которого х = 7 является посторонним для исходного У. Поэтому, если при решении У. делались действия, могущие привести к появлению посторонних решений (например, возведение У. в квадрат), то все полученные решения преобразованного У. проверяют подстановкой в исходное У.

Наиболее изучены У., для которых функции f kявляются многочленами от переменных x 1 , x 2 ,..., х п , – алгебраические У. Например, алгебраическое У. с одним неизвестным имеет вид:

a 0 x n + a 1 x n-1 +... + a n= 0 ( a 0¹ 0); (*)

число n называется степенью У. Решение алгебраич. У. было одной из важнейших задач алгебры в 16–17 вв., когда были получены формулы и методы решения алгебраических У. 3-й и 4-й степеней (см. Алгебра, Кардано формула ) (правила решения алгебраических У. 1-й и 2-й степеней были известны ещё в глубокой древности). Для корней У. 5-й и высших степеней общей формулы не существует, поскольку эти У., вообще говоря, не могут быть решены в радикалах (Н. Абель, 1824). Вопрос о разрешимости алгебраических У. в радикалах привёл (около 1830) Э. Галуа к общей теории алгебраических У. (см. Галуа теория ) .

Каждое алгебраическое У. всегда имеет хотя бы одно решение, действительное или комплексное. Это составляет содержание т. н. основной теоремы алгебры, строгое доказательство которой впервые было дано К. Гауссом в 1799. Если a – решение У. (*), то многочлен a 0 x n + a 1 x n-1 +... + a n делится на х – a . Если он делится на ( х – a) k , но не делится на ( х – a) k+1, то решение a имеет кратность k. Число всех решений У. (*), если каждое считать столько раз, какова его кратность, равно n .

Если f ( x ) – трансцендентная функция, то У. f ( x ) = 0 называются трансцендентным (см., например, Кеплера уравнение ) , причём в зависимости от вида f ( x ) оно называется тригонометрическим У., логарифмическим У., показательным У. Рассматриваются также иррациональные У., то есть У., содержащие неизвестное под знаком радикала. При практическом решении У. обычно применяются различные приближённые методы решения У.

Среди систем У. простейшими являются системы линейных У., то есть У., в которых f k суть многочлены первых степеней относительно x 1 , x 2 ,..., х п(см. Линейное уравнение ) .

Решение системы У. (не обязательно линейных) сводится, вообще говоря, к решению одного У. при помощи т. н. исключения неизвестных (см. также Результант ) .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Отзывы о книге «Большая Советская Энциклопедия (УР)»

Обсуждение, отзывы о книге «Большая Советская Энциклопедия (УР)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x