Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности

Здесь есть возможность читать онлайн «Лаура Спинни - Шанс есть! Наука удачи, случайности и вероятности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент БИНОМ. Лаборатория знаний, Жанр: foreign_religion, foreign_home, Самосовершенствование, Эзотерика, Эзотерика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Шанс есть! Наука удачи, случайности и вероятности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Шанс есть! Наука удачи, случайности и вероятности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Какую роль играет случай и вероятность в жизни человека и в жизни всей Вселенной? К примеру, насколько случайны образование нашего мира, мутации генов и встреча наших будущих родителей? Существует ли свобода воли и предсказуемо ли будущее? И как приручить удачу?
На эти и многие другие очень непростые вопросы ищут ответы лучшие авторы журнала
в сборнике эссе под редакцией известного популяризатора науки Майкла Брукса.

Шанс есть! Наука удачи, случайности и вероятности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Шанс есть! Наука удачи, случайности и вероятности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Так или иначе, подчеркивает Нигрини, область применения закона Бенфорда вовсе не ограничивается ловлей мошенников. Взять хотя бы хранение информации. Математик Петер Шатте из Фрайбергской горной академии предложил оптимизировать запись компьютерных данных, распределяя области для хранения в пропорциях, продиктованных законом Бенфорда.

По мнению Хилла (того самого, из Технологического института Джорджии), широкая применимость закона Бенфорда могла бы также оказаться полезной для финансовых и демографических прогнозов. И финансистам, и демографам иногда нужно «сверять с реальностью» свои математические модели, а закон Бенфорда позволяет осуществлять такую сверку относительно просто. «Нигрини показал недавно: численность населения более чем трех тысяч американских округов почти соответствует закону Бенфорда, – говорит Хилл. – А значит, не исключено, что закон может стать основой методов проверки разных моделей, которые дают прогноз грядущей численности населения. Если предсказанные величины далеки от бенфордовского соотношения, модель придется пересмотреть».

И Нигрини, и Хилл подчеркивают: закон Бенфорда – не панацея, которая позволит избавить мир от мошенников и потерь данных. Отклонения от прогнозов, сделанных согласно этому закону, могут быть вызваны совершенно невинными вещами: к примеру, тем, что кто-то округляет числа в большую или в меньшую сторону. Оба ученых готовы признать, что неосмотрительное применение закона в реальных жизненных ситуациях вполне может приводить к путанице и неразберихе. Хилл добавляет: «Всякую математическую теорему, всякий статистический тест можно использовать неправильно. Это меня не беспокоит».

Впрочем, оба предчувствуют: в будущем человечество наверняка придумает, где можно использовать закон Бенфорда по-настоящему разумно. Хилл говорит: «Для меня этот закон – ярчайший пример математической идеи, которая стала сюрпризом для всех, даже для специалистов».

Примечание. Алекс – не настоящее имя бывшего студента, учившегося у Нигрини.

Здесь, там и везде

Особое пристрастие природы к определенным числам и числовым последовательностям с давних пор восхищает математиков. Так называемое «золотое сечение», соотношение, примерно равное 1,62:1 (и, как многие полагают, позволяющее строить наиболее изящные прямоугольники), обнаруживают таящимся в самых разных местах, от морских ракушек до морских узлов. Или возьмем ряд Фибоначчи: 1, 1, 2, 3, 5, 8… (каждое новое число, начиная с третьего, является суммой двух предыдущих). Эта последовательность встречается в природе буквально повсюду, характеризуя и распределение листьев на стеблях, и спиральный узор семян в головке подсолнуха, и многое, многое другое.

По-видимому, закон Бенфорда – еще одно такое фундаментальное свойство математической вселенной. Согласно этому закону, процентная доля чисел, которые начинаются с цифры, обозначаемой нами как D, составляет 100 × log 10(1 + (1/D)). Таким образом, около 30 % чисел будут начинаться с единицы, 17,6 % чисел – с двойки… и так вплоть до девятки, с которой начинается 4,6 % чисел. (Напомним, этому закону подчиняются не всякие выборки чисел.)

Но математика закона Бенфорда позволяет предсказать и встречаемость всех прочих цифр, а не только первых. К примеру, этот закон предсказывает, что ноль будет наиболее вероятной второй цифрой (его доля – примерно 12 % среди всех вторых цифр), тогда как девятка – наименее вероятная вторая цифра (ее доля – около 8,5 %).

Таким образом, из закона Бенфорда следует, что наиболее частые неслучайные числа будут начинаться с 10. Они будут встречаться нам почти вдесятеро чаще, чем те, что начинаются с наименее вероятного сочетания – 99.

Как нетрудно догадаться, закон Бенфорда предсказывает, что доли единиц, двоек, троек и т. д. по мере продвижения вправо (то есть по мере увеличения «номера» цифры) будут все сильнее сглаживаться, стремясь к 10-процентной доле для последней значимой цифры каждого большого числа.

Еще один забавный поворот: оказывается, ряд Фибоначчи, золотое сечение и закон Бенфорда взаимосвязаны. Отношение двух последовательных чисел Фибоначчи стремится к золотому сечению, а цифры всех чисел в ряду Фибоначчи стремятся к ситуации, когда они подчинены закону Бенфорда.

Давайте потеряемся

В финале хорошо прозвучит мольба: давайте не будем устранять из своей жизни всю неопределенность. Технология делает точным и предсказуемым все – от автомобильных GPS-навигаторов до рекомендаций книжных новинок. Но это не обязательно хорошо. Не исключено даже, что выражение «попытать счастья» как раз и подразумевает: счастье может зависеть от вашей готовности положиться на случайность. Во всяком случае, именно это обнаружила Катрин де Ланж.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Шанс есть! Наука удачи, случайности и вероятности»

Представляем Вашему вниманию похожие книги на «Шанс есть! Наука удачи, случайности и вероятности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Шанс есть! Наука удачи, случайности и вероятности»

Обсуждение, отзывы о книге «Шанс есть! Наука удачи, случайности и вероятности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x