Мы уже говорили, что в любом человеке заложен необходимый потенциал для того, чтобы стать как любящим и заботливым, так и жестоким и агрессивным – или же чем-то средним. На каком делении этой шкалы расположится каждый из нас, зависит как от генетического наследия предков, так и от личного жизненного опыта. Работу генетического компонента хорошо иллюстрируют эксперименты по выведению новых пород животных. Например, если из крысиного помета каждый раз отбирать самого спокойного и самого агрессивного детеныша, то через двадцать поколений от двух линий можно получить потомство с совершенно разным поведением. Спокойные крысы будут вести себя как домашние питомцы, их можно брать на руки, гладить и так далее, тогда как с агрессивными биологам придется работать исключительно в кольчужных перчатках. Эти признаки не меняются, если агрессивные матери будут выкармливать спокойных детенышей, и наоборот [235]. Это означает, что воспитание не может подавить яркую генетическую предрасположенность, однако не означает и того, что воспитание как фактор не работает вовсе. Другие эксперименты с этими же крысами показали, что характер развития детенышей все же зависит от материнской заботы, диеты и прочих внешних факторов [236]. В генетически более разнообразной популяции влияние окружающей среды будет еще заметнее.
В статье, посвященной приручению диких животных, Генри Николс высказывает предположение о том, что человеческий вид, чье выживание зависело от сотрудничества, на протяжении миллионов лет изгонял из своей среды наиболее агрессивных особей. Иными словами, мы сами себя одомашнили. Эта гипотеза хорошо объясняет партнерскую фазу нашей истории. Но после Великого Падения вектор давления эволюционного отбора сменился на противоположный. В доминаторских культурах для выживания требуется агрессия и желание доминировать, а не сотрудничать. Если вспомнить, что для закрепления определенного признака у животных требуется двадцать-тридцать поколений отбора, то это представляется вполне возможным. Аналогичный отбор в условиях доминаторской культуры уже давно оказывает на нас пагубное влияние.
Есть еще одно распространенное заблуждение: будто бы гены контролируют работу клеток, в которых размещаются. Это, однако, слишком большое преувеличение. Каждый ген – не больше чем рецепт для синтеза определенного протеина, маленького кирпичика в строительстве клетки. Любые две клетки в нашем организме обладают идентичным набором генов и, следовательно, одинаковыми книгами рецептов. Но выбирая тот или иной рецепт, можно получить более ста типов клеток, от нейронов до мышечной ткани. Детали этого процесса до сих пор остаются скрытыми от ученых, но в большинстве случаев активность генов (генетическая экспрессия) контролируется комбинацией нескольких регуляторных молекул. Каждая из них влияет на работу множества генов, и одновременно одни и те же молекулы могут действовать в разных типах клеток на разных этапах развития. Таким образом, регуляторные клетки можно сравнить со словами, значение которых меняется в зависимости от контекста. А сочетания слов в осмысленные команды управляют всем остальным. Это означает, что эффект от введения в клетку новой регуляторной молекулы зависит от собственной истории клетки и того, какие молекулы в ней уже работают. Некоторые из молекул могут не функционировать вообще (по крайней мере, так кажется), в то время как другие являются наиболее важными кусочками мозаики, которая, будучи собранной, запускает весьма важный процесс – формирование глазного яблока, например [237].
Синтез некоторых регуляторных молекул запускается генами в самой клетке. Но для того, чтобы развитие тела шло без ошибок, каждая клетка должна управлять процессами, протекающими в остальном организме. Именно для этого осуществляется сообщение клетки с ее окружением через мембрану, функция которой не ограничивается объединением клетки в единое целое. Мембрана контролирует поступление веществ внутрь клетки и обратно, а также химические процессы, происходящие в самой клетке. Эти функции мембраны обеспечиваются встроенными в нее интегральными мебранными белками (ИМБ). В мембране каждой клетки таких белков сотни тысяч [238]. Типы ИМБ также исчисляются тысячами, но каждый из них можно отнести к одному из двух обширных классов. Рецепторы мембраны клетки – это молекулы, принимающие сигналы в виде молекул или в виде энергии – звука, света или радиоволн. Каждый рецептор приспособлен для конкретного сигнала – молекулы или энергетического воздействия строго определенного типа. Получая сигнал, ИМБ меняют форму, тем самым вызывая каскад химических реакций внутри клетки. Второй класс ИМБ – это эффекторы, в своем принципе работы они подобны клапанам. Когда эффектор распознает ион или молекулу заданного типа, он открывается, пропускает ее сквозь себя – внутрь клетки или наружу – и закрывается снова.
Читать дальше
Конец ознакомительного отрывка
Купить книгу